
Interactive continual learning for robots: a neuromorphic
approach

Elvin Hajizada
elvin.hajizada@intel.com

Neuromorphic Computing Lab, Intel
Labs

Chair of Cognitive Systems, Technical
University of Munich
Munich, Germany

Patrick Berggold
patrick.berggold@tum.de

Chair of Computational Modeling and
Simulation, Technical University of

Munich
Munich, Germany

Massimiliano Iacono
massimiliano.iacono@iit.it

Event-Driven Perception for Robotics
group, Istituto Italiano di Tecnologia

Genova, Italy

Arren Glover
arren.glover@iit.it

Event-Driven Perception for Robotics
group, Istituto Italiano di Tecnologia

Genova, Italy

Yulia Sandamirskaya
yulia.sandamirskaya@intel.com

Neuromorphic Computing Lab, Intel
Labs

Munich, Germany

ABSTRACT
Intelligent robots need to recognize objects in their environment.
This task is conceptually different from the typical image classifica-
tion task in computer vision. Robots need to recognize particular
object instances, not classes of objects, which makes these tasks
simpler. However, these instances need to be recognized under
different viewing angles, poses, and lighting conditions reliably.
Moreover, for many application, robots need the capability to learn
new objects quickly, e.g., in an interactive session with the user,
and adapt object representations if conditions change and mistakes
are made. This scenario creates a demand for object learning that
(1) is continual, i.e. new objects can be added at any time without
causing forgetting, (2) requires a small amount of data that can be
acquired in a short interactive session with the user, and (3) stays
open to later adaptation. Deep neural networks trained with slow
gradient-based backpropagation, despite of their excellent perfor-
mance on image processing tasks, are not well-suited for interactive
robotic learning tasks. We thus explore smaller neural architectures
and increase autonomy of the learning process by a neuronal state
machine (NSM). The NSM regulates learning in the network and
enables continual adaptation of the learned object prototypes. We
implement this model as a spiking neural network in Intel’s neuro-
morphic research chip Loihi and test it on a custom event-based
camera dataset generated in a simulated 3D environment. Our spik-
ing neuronal network uses simple feature extraction layers and a
single plastic layer that stores visual patterns using online, on-chip
local learning rules. This network reaches 96.55±2.02% of testing
accuracy on sets of 8 3D objects with 8 different views per object in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICONS 2022, July 27–29, 2022, Knoxville, TN, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9789-6/22/07. . . $15.00
https://doi.org/10.1145/3546790.3546791

interactive, on-demand learning experiments; it demonstrates up
to x300 energy efficiency and better or on par latency compared to
other online learning methods. This work contributes to neuronal-
network based machine learning for robots with a small power
footprint and interactive learning capability.
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1 INTRODUCTION
When a human child learns a new object, he or she takes a look,
maybe turns the object around, asks what it is, and – some magic
happens – they can recognize it again in all kinds of settings and
conditions, without compromising the ability to recognize fifteen
other objects learned that day [32]. For our future assistive or manu-
facturing robots, we’d wish a similar capability. As a new task arises,
we would like to show the robot a new object to learn, let it take a
good look, maybe from a couple of sides, and then be able to detect
this object and distinguish it from a dozen other objects relevant
today. Modern AI methods that use deep neural networks excel on
many visual learning tasks [26, 31, 44, 53, 63, 64]. However, these
“monolithic” DNNs are not well suited for our child-like learning
scenario: training them requires a lot of well-prepared data, and
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trying to add new objects to the list requires careful retraining with
all data to avoid catastrophic forgetting [20, 24, 43, 52, 73].

To enable continual learning in DNNs, there is a broad variety
of methods [46] that improve their applicability in dynamic task
setting, e.g. using data replay [22, 52, 58, 66], model growing [55],
regularization methods [28], uncertainty-based sampling strategies
[13], smart distribution of resources in a neural network [61], and
other ways to counteract catastrophic forgetting when new inputs
do not match the learned distributions [11, 14, 40]. These methods
are typically tested in image recognition benchmarks, which are
substantially different from robotic tasks [35]. Data collection and
labeling in the real world, limited memory and computational re-
sources, instability of the learning algorithms [34] are some of the
challenges that make current methods difficult to apply in robots
[35]. As a result, we are still lacking an efficient and elegant solution
to object learning for robots [47].

Outside of the deep learning domain, there exists another set of
approaches that address incremental object learning in robotics, e.g.,
for mobile robots [29, 37, 39]. These methods do not use deep neural
networks, but generally rely on bio-inspired feature extractors (e.g.
HMAX-like hierarchical features) [29] or feature representations
like color histograms [37], or composed receptive field histograms
(CRFH) [39]. The incremental online learning is implemented by a
training algorithm on top of these extracted features. Such methods
include incremental SVM (ISVM) [5, 39], naive Bayes [41], passive-
aggresive classifier [7], incremental learning vector quantization
(ILVQ) [37], growing neural gas (NG) [16] or even simple stochastic
gradient descent (SGD).

In this context, prototype-based approaches are promising can-
didates for continual object learning, because these methods store
object representations more locally, and model capacity can be
adjusted by incorporating more reference vectors to learn new ob-
jects [6, 37, 38]. Recently, there has been a growing interest in com-
bining deep learning methods with prototype-based approaches to
achieve incremental few-show learning: the core idea is that there
exists an embedding in which the points cluster around a single
prototype representation for each class [6, 50, 60, 71].

In this paper, drawing inspiration from such prototype-based
approaches, we propose a new spiking neural network architecture
that does not rely on backpropagation in a deep neural structure
and instead localizes learning to a single layer of a multi-layered
network. This allows us to fully deploy the network on neuromor-
phic hardware, making use of its on-chip local synaptic plasticity
to enable online, continual learning. The network uses simple pre-
wired bio-inspired feature extraction and a plastic read-out layer,
achieving fast, single-shot memory formation. Learning in our neu-
ral network is controlled by a neuronal state machine – a circuit of
interconnected neurons that observes the activity in the input and
output layers of the network and “decides” if a weight update is
required, a label needs to be requested, or a new readout neuron has
to be recruited. Thanks to this control mechanism, we do not need
to separate learning and recognition phases, weight adaptation can
be turned on as needed, based on the user feedback or self-detected
errors.

We tested our model on online learning of representations of
a small number of object instances presented in different poses
or viewing angles. We use a robotic simulator Gazebo to generate

several views of the 3D objects, simulate an event-based camera that
samples these views with “microsaccadic” movement, and show
how our model can learn to discriminate the objects in a simulated
interactive setting. We believe this type of continual learning model
together with the advantages of its neuromorphic implementation
(e.g. energy efficiency, good scalability, and online learning) will
lead to practical solutions for robotic object learning systems. We
demonstrate an implementation of such a system on neuromorphic
hardware.

2 METHODS
2.1 Neuromorphic hardware
In this work, we implement the neural network architecture on
Intel’s neuromorphic research chip Loihi [8]. As the other neuro-
morphic hardware devices, Loihi harnessed insights from biological
neural systems to build electronic devices that realize biological
computing principles efficiently [56]. Loihi has shown orders of
magnitude improvements in terms of low power consumption and
fast processing speed on a range of AI tasks [10]. In addition, the
on-chip bio-inspired synaptic plasticity on Loihi supports on-chip
continual learning.

Each Loihi chip contains 128 neuronal cores, implementing 128K
spiking leaky integrate-and-fire (LIF) neurons and 128M synaptic
connections, characterized by their weight,𝑤𝑖 𝑗 , and delay, 𝑑𝑖 𝑗 . The
on-chip learning engine updates the weights of the learning layer
based on the synaptic plasticity equations that define the learning
rule [8]. The learning rule can update weights based on label signals
obtained from an expert (e.g. human) while the system is in use.
Our network uses approximately 18K neurons and 0.5M synapses
on a single Loihi chip.

In our experiments we combine Loihi with an event-based cam-
era, theDynamic Vision Sensor (DVS) [2, 36], which in turn achieves
low-power, low-latency, and high dynamic range in visual sens-
ing [17] and matches the event-based nature of the processing
in SNNs. The DVS only produces output if there is a change in
the visual field. Since in our experiments we deal with potentially
static objects, we use small camera movements, “microsaccades” to
generate events in our experiments.

Different methods can be used to develop algorithms, or SNN
architectures, for neuromorphic hardware. Conversion of the con-
ventional deep convolutional networks to spiking neural networks
(SNNs) [49] and surrogate gradient methods [59] allow us to use
the principles of deep learning to create networks that solve pat-
tern classification tasks. Several attempts have been made to enable
online learning in such deep networks, e.g., by making the last
layer of the network plastic to learn new patterns using features
extracted by the early layers of the pre-trained network [23, 62]. We
pursue a similar route in our work, using the plastic layer to learn
object prototypes in an online fashion, controlled by a neuronal
state machine.

2.2 Spiking Neural Network Model
The spiking neuronal network used for object learning in this work
consists of three fixed feature extracting layers, a learning layer for
object instances and views, and a neuronal circuit that implements
a Neuronal State Machine (NSM) as shown in Fig. 1. All layers and
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the NSM consist of spiking leaky-integrate-and-fire (LIF) neurons
running on Intel’s neuromorphic research chip Loihi [8].

Figure 1: Overview of the proposed architecture. The feature
extraction part of the architecture consists of subsampling
(SS), S1, and C1 layers, which together generate the feature
space of the input. The following plastic layer S2 (dark blue
neurons) is organized into object groups (OG) and learning
objects based on the extracted features and expert-provided
labels. The learning is controlled by the Neural StateMachine
(NSM) through the error and label neurons and the dendritic
compartments of S2 neurons. The network’s inference deci-
sion is read out from output neurons

2.2.1 Visual Feature Extraction. The feature extraction part of the
architecture consists of subsampling (SS), S1 and C1 layers, inspired
by the previous work on HMAX architectures [27, 42, 45, 57].

Subsampling Layer. The subsampling layer (SS) uses a convolu-
tional kernel size of 2 × 2. With an appropriate membrane voltage
threshold and a time constant of voltage decay (Table 1), this layer
filters out the noise events in the input based on the assumption
that noisy events are spatiotemporally less persistent. We set a very
short time constant for LIF neurons in the SS layer so that they can
spike only once for every microsaccade [27].

S1 Layer: Gabor Filtering. The second layer, S1, is similar to the
simple-cells layer of the cortically inspired visual pipeline [42, 45].
The S1 is an event-based convolutional layer, responsible for ex-
tracting the edges from the SS layer with four oriented Gabor filters
(0, 45, 90, and 135 degrees). There are, respectively, four 2D neu-
ronal oriented-edge feature maps in the S1 layer. The Gabor filters
have wavelength 4, standard deviation 2, and aspect ratio 0.5; they
are applied with a convolutional window size of 9 × 9 and stride of
1. The output of the S1 forms four binary (spike/no spike) feature
maps. Similar to the SS layer, the S1 neurons can spike only once per
input instance; they indicate if an edge with the specific orientation
is present in their receptive field. Following [45], an offset of 𝜋

8 is
applied to Gabor filters.

C1 Layer: Pooling. The S1 layer is followed by the first complex
cell layer C1, also forming four neuronal grids. The neurons in
the C1 layer perform local max pooling over a window of 4 × 4
with stride 3. A C1 neuron will spike if any of the S1 neurons in its
receptive field fires. This layer adds local position invariance to the
oriented edges. Each C1 neuron can spike only once per instance,

thus, its output per microsaccade is binary and forms the extracted
feature map to be associated with different views of objects in the
next layer.

2.2.2 The Continual Classifier: Plastic Layer and Learning Process.

S2 layer: Prototypes. The next layer, S2, is fully connected from
C1 with plastic synapses, all of which have zero initial weights.
S2 neurons are divided into 𝑛𝑂𝑏 𝑗 Object Groups (OG). Each OG is
pre-allocated for an object, while each neuron in this OG learns a
combination of complex features (C1 activation), i.e. a prototype,
for a specific view of this object that is sufficiently different from
previously learned views. When S2 neurons fire, their synaptic
weights change based on the timing of pre- and post-synaptic spikes
and activity of the Label and Error neurons (Fig. 1), thus updating
the complex features (prototypes) that the S2 neurons are detect-
ing. Particularly, the Label neurons provide the S2 neurons with a
supervision signal from a user (e.g. human), while the Error neu-
rons calculate and propagate error signals to C1→S2 synapses (i.e.,
prototypes) comparing this user-provided label to the network’s
prediction, all happening while the system is in use.

Learning Process and Local Learning Rule. The learning process
of the neural network consists of three components: (1) alloca-
tion–learning new objects or novel views of the known objects
as new prototypes by allocating untaken S2 neurons; (2) merg-
ing–updating these prototypes by incorporating new object views
into them if these are similar to stored prototypes, hence learning
gradual conceptual drifts; (3) punishment–weakening the active
synapses of any prototype that has incorrectly responded. All these
processes are automatic: there is no need to turn on and off the
learning or explicitly state if the network should learn or infer.
Specifically, all three learning components can proceed anytime the
system is in use, but only if a label signal is provided. Otherwise,
the network makes an inference, i.e. makes its best guess based
on the similarity between the provided instance and the stored
prototypes. Notably, the similarity measure in our architecture is
the activation levels of the S2 neurons (simple dot product between
binary feature spike from C1 and non-negative integer weights of
C1→S2 synapses) that is thresholded to generate output spike by
the S2 neurons. As neither the feature input nor the weights are
normalized, the similarity is not normalized either. This limitation
of the current architecture is discussed in the results and discussion
sections.

The neuromorphic implementation of this learning procedure
consists of a learning rule for the plastic layer of synapses and a
neural state machine (NSM) to calculate and provide the necessary
signals to this layer. The synaptic plasticity rule is mathematically
described by the following equations:

Δ𝑤 (𝑡) = 𝑎+𝑥 𝑗 (𝑡) (𝑦𝑖 (𝑡) − 𝑦𝑖𝑚𝑝 )𝜎𝑖 (𝑡) − 𝑎−𝑒𝑖 𝑗 (𝑡)𝜎𝑒 (𝑡), (1)

𝜎𝑖 (𝑡) =
∑︁
𝑘

𝛿 (𝑡 − 𝑡𝑖
𝑘
), (2)

𝑑

𝑑𝑡
𝑒𝑖 𝑗 (𝑡) = 𝑏+𝑥 𝑗 (𝑡)𝜎𝑖 (𝑡) − 𝑒𝑖 𝑗 (𝑡)/𝜏𝑒 , (3)

𝑑

𝑑𝑡
𝑥 𝑗 (𝑡) = 𝑥𝑖𝑚𝑝𝜎 𝑗 (𝑡) − 𝑥 𝑗 (𝑡)/𝜏𝑥 , (4)
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Table 1: The parameters of the proposed network on Loihi (unitless, footnote on p.10 for SDK details).

Name 𝑣𝑆𝑆
𝑡ℎ

𝑣𝑆1
𝑡ℎ

𝑣𝑃1
𝑡ℎ

𝑣𝑆2
𝑡ℎ

𝜏𝑆2𝑣 𝑑𝑆2
𝑟𝑒 𝑓

𝑡𝐿𝑏𝑠𝑡𝑎𝑟𝑡 𝑡𝐿𝑏
𝑑𝑢𝑟

𝑛𝑂𝐺 𝑛𝑆2𝑃𝑒𝑟𝑂𝐺 𝑛𝑠𝑡𝑒𝑝𝑠

Value 11 40 5 4000 20 3 0 21 8 8 100

𝑑

𝑑𝑡
𝑦𝑖 (𝑡) = 𝑦𝑖𝑚𝑝𝜎𝑖 (𝑡) − 𝑦𝑖 (𝑡)/𝜏𝑦 . (5)

Here, 𝑥 𝑗 (𝑡) and 𝑦𝑖 (𝑡) are the pre- and postsynaptic traces of
spikes; 𝑥𝑖𝑚𝑝 and 𝑦𝑖𝑚𝑝 is the amplitude of impulse that is added to
the respective traces every time the pre- and postsynaptic neurons
spike; 𝜎𝑖 (𝑡) and 𝜎𝑒 (𝑡) are the spike trains of the postsynaptic (S2)
neuron and the Error neuron (3rd factor), respectively; 𝑒𝑖 𝑗 is the
eligibility trace stored in the tag variable of the synapses and 𝜏𝑥 ,
𝜏𝑦 , 𝜏𝑒 are the decay time constants of the corresponding traces;
𝑎+, 𝑎−, 𝑏+ > 0 are the positive learning rates.

The first term in Eq. (1) accounts for synaptic potentiation (weight
increase), including both allocation (recruitment of new neurons)
and merging components. The second term describes the synaptic
depression (weight decrease), i.e. punishment. More specifically,
the depression component of the Eq. (1) is a 3-factor learning rule
[33, 67, 70] and serves to decrease/punish the weights which con-
tributed to an error: if there is an error spike, i.e. 𝜎𝑒 (𝑡) ≠ 0, then all
synapses with nonzero presynaptic activity–those that have been
recently active–will decrease their weights. For this purpose 𝑒𝑖 𝑗
keeps the trace of presynaptic activity that has preceded postsy-
naptic activity and decay with the 𝜏𝑒 time constant (Eq. (3)). This
so-called eligibility trace [18] is applied to the synapse as nega-
tive weight change only when an error spike is present. The error
signals are calculated by NSM based on the network’s prediction
(inference) and the user-provided label, as described in Sec. 2.2.3.

In Loihi 1 chip, each synapse can receive only one broadcasted
3rd factor signal [9], however, in our network we have two such
signals: label and error.We chose to utilize this channel to propagate
error signals. Hence the potentiation term needs to be based on
only pre- and postsynaptic traces. This led us to design the second
(potentiating) term as a modified Hebbian learning rule: it includes
the additional multiplicative term (𝑦𝑖 (𝑡) − 𝑦𝑖𝑚𝑝 ) which modulates
the positive weight change based on the amount of the postsynaptic
activation. Practically, this implements a version of the facilitation
learning mechanism [48].

However, this approach brings novel challenges. First, as the
learning is never “turned off”, we need a mechanism to guarantee
that during inference the weights are not changed by the learning
rule. This is achieved by exploiting the fact that any S2 neuron
(postsynaptic in the learning rule) can spike only once per input
pattern during inference, because of the single-spike propagation
in our network. This fact guarantees that the term (𝑦𝑖 (𝑡) − 𝑦𝑖𝑚𝑝 )
in Eq. (1) is zero at the time of the first postsynaptic spike during
inference, since by definition 𝑦𝑖 (𝑡) = 𝑦𝑖𝑚𝑝 after the first spike. This
makes the weight update also zero (note that the depression term is
zero too because there is no error signal during inference). The rest
of the potentiation term (𝑎+𝑥 𝑗 (𝑡)𝜎𝑖 (𝑡)) is classic Hebbian learning:
the weight update is proportional to the value of the presynaptic
trace, 𝑥 𝑗 (𝑡), at the time of the postsynaptic spike. Altogether, the

network can switch to inference without explicitly turning off the
learning on chip, as the learning rule update is zero in the single-
spike case of inference.

The second challenge is that we have two types of synaptic po-
tentiation (allocation and merging) that need to be differentiated.
This differentiation is done by the facilitation-based learning, which
updates the weights depending on the level of the postsynaptic ac-
tivity. This activity is controlled by the NSM during learning. The
initial weights of all S2 neurons are zero. For allocation we want
the network to learn the presented pattern as a new prototype.
This requires a large positive weight change on the corresponding
synapses. On the other hand, for merging we don’t want to entirely
overwrite the existing prototype, rather superimpose an intensity-
wise scaled-down copy of the new pattern onto this prototype1.
Thus merging requires much smaller synaptic potentiation. The dif-
ferent level of potentiation is achieved by modulating (𝑦𝑖 (𝑡)−𝑦𝑖𝑚𝑝 )
term: the larger is the postsynaptic activation 𝑦𝑖 (𝑡), the higher is
the potentiation. In turn, 𝑦𝑖 (𝑡) is controlled by the facilitating label
signal: when S2 neurons are facilitated by the label signal, they
are artificially forced to spike more than once per instance. This
makes 𝑦𝑖 (𝑡) − 𝑦𝑖𝑚𝑝 > 0 after the second postsynaptic spike, hence
potentiating the weights according to the amount of the facilitation,
and making the difference between allocation and merging. The
level of the provided facilitation is controlled by NSM, as described
in Sec. 2.2.3.

Overall, our approach can be seen as the sequential clustering
of patterns that present different views of an object. Allocating
new S2 neurons is similar to defining a new cluster with the new
pattern as the center while merging shifts the center of the cluster
towards the sum of the prototype and the new pattern. Synaptic
depression triggered by an error signal pushes the cluster center
towards a vector that is orthogonal to the presented pattern. This
way the SNN achieves supervised, dynamically evolving clustering
of the presented patterns, leading to fast learning and continual
adaptation using local on-chip learning rules.

2.2.3 The Neural State Machine. The main contribution of this
work is to show how learning and inference can be fully automated
in the neuronal network. In particular how a spiking neuronal net-
work on a chip, operating in an interactive scenario, can use the
concept of the neuronal state machine (NSM) for this purpose. Our
NSM is a small interconnected net of neurons that receive labels
from a user, detects different states of the overall SNN, and triggers
different computing stages, reparametrizing parts of the network on
the fly. It controls the inference and learning phases through four
main functions: allocating new S2 neurons; detecting representa-
tional drift and updating the stored patterns accordingly (merging);

1The assumption here is an interactive scenario: the expert does not provide a label
for an object instance that is already correctly inferred by the network
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calculating error signals; generating other state outputs represent-
ing its knowledge of the input (both the visual and the label input).
Different parts of the NSM are highlighted in the subfigures of Fig. 2
and are presented in detail below.

S2 Neuron Allocation. In our network, the facilitation signal (in-
troduced in Sec. 2.2.2) is provided by the label neurons’ spikes
through different dendritic compartments (“input channels”) of the
S2 neurons (see Fig. 2b). The S2 neurons have a 𝑆𝑜𝑚𝑎 compartment
(dark blue circle) which receives plastic synapses from the C1 layer
and four different dendritic compartments (𝐷1 − 𝐷4). These den-
drites propagate label signals from a Label neuron 𝐿𝑏 to the 𝑆𝑜𝑚𝑎

and regulate allocation and merging.
In the case of the allocation, the direct 𝐷1-pathway is used: each

S2 neuron in a group receives the label signal at a slightly different
point in time because the corresponding 𝐿𝑏→𝐷1 synapses have
different delays. This makes one by one allocation of the S2 neurons
possible: when a label signal is presented to a specific object group
for the first time, the neuron with the smallest D1 delay will be
activated and inhibit all other D1 compartments that are part of the
same object group. Then the neural processing advance as follows:
the synapse fromD1 to S2 is plastic and initially strong; through this
synapse the user-activated label neuron provides strong excitation
to the corresponding S2 neuron for the first time and driving (𝑦𝑖 (𝑡)−
𝑦𝑖𝑚𝑝 ) term to high values (see sec. 2.2.2); this increases the weights
for the active synapses, hence learning the pattern. Subsequently,
this D1→S2 synapse is fully depressed, i.e. cut to avoid reallocation
in the later trials, finally completing the allocation of this S2 neuron.
The other S2 neurons in the same group are allocated one by one
in the same way.

Merging. For the subsequent patterns presented with the same
label, we want the network to check first if these are similar to
any stored patterns, before deciding to allocate a new S2 neuron.
This brings us to the case of merging which requires the automatic
superimposition of a labeled pattern that is similar to one of the
stored prototypes. Here we implement this by combining two mech-
anisms: (1) detection of similarity between the presented pattern
and the stored prototypes and (2) moderate facilitation of the S2
neuron with the highest similarity to update this prototype. The
first mechanism is realized by the following pathway: the provided
label signal boosts activation of all S2 neurons by some amount
through 𝐷2 compartment; if one of the allocated S2 neurons fires,
this is considered as detection of high similarity and subsequently
this neuron blocks any new neuron allocation. The same spike
together with the label spike generates a positive feedback loop
through D3 and D4 compartments (𝑆𝑜𝑚𝑎→𝐷4→𝐷3→𝑆𝑜𝑚𝑎) and
force the 𝑆𝑜𝑚𝑎 to spike more, hence potentiating active C1→S2
synapses; this potentiation is the merging of the stored pattern and
the input. However, this is a weaker potentiation compared to the
allocation case, and hence only adapts the weights slowly to track
any slow representational drift.

Error Signal Calculation. As we introduced in sec. 2.2.2, during
the learning process, spikes of the error neurons provide the third
factor for the learning rule. For each object neuron there is one
Error neuron which signals that this object neuron spike does not
correspond to the label neuron spike. This is computed as follows

Figure 2: Neural State Machine (NSM). (a) Controlling the
autonomous learning process. (b) Error signal calculation
during the training instances for two objects. (c) Autonomous
allocation and merging of view neurons in S2 for two S2
neurons from one object group. See text for details.

(Fig. 2a): when a label is provided, it excites the inhibitory dendritic
compartment (orange rhombus) of the respective Error neuron
(hence inhibiting it) and also activates the “label available” (LA)
neuron. In turn, the LA neuron inhibits the dendritic compartments
of all Error neurons, except the one that is excited by the active
label neuron. Thus, if a label is provided, then all Error neurons
are disinhibited, except the one that corresponds to the label. The
error neurons that are disinhibited can respond to an incoming
object neuron spike. Each such spike generates an error spike which
signals that the predicted object does not correspond to the provided
label.

Auxiliary Neural State Outputs. To enable the interactive sce-
nario, the object recognition network in addition to its classification
decisions detects and signals to the rest of the network, the other
behavioral modules (e.g. attention, speech), and the user what else
it “knows” about the currently presented the object instance and
its label. For this purpose, we implemented six additional neuronal
groups as the part of the neuronal state machine (not shown in
the figure): “input available” (IA) neuron indicates if the network
has received any visual input; “known object” (KO) and “unknown
object” (UkO) neurons signal if the network “knows” the object,
i.e. has strong confidence about object’s class; “known label” (KLb)
and the “unknown label” (UkLb) neurons report if the network has
previously “heard” a specific expert-provided label; “learning fin-
ished” (LF) neuron signals that the learning process of the current
object instance is finalized. However, the use case of these neurons
is outside the scope of the experiments and the setup presented
in this paper. These neurons can be used in a closed-loop learning
scenario to control the activation of the robot’s behaviors: shifting
attention, moving the sensor to collect events, or asking the user
for a label.
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Figure 3: Experimental setup for data collection in Gazebo
simulation environment.

Figure 4: The examples of collected visual output: the entire
visual field (camera view) and the attended region-of-interest
(ROI) for two different objects–scissors and a bowl.

3 EXPERIMENTS
3.1 Simulated Experimental Setup for Data

Collection
To test our neuronal network for interactive continual object learn-
ing, we used a simulated robotic environment in the Gazebo simu-
lator (Fig. 3) running the model of the iCub robot [65]. In Gazebo,
we placed the simulated iCub robot in front of a table and rendered
3D objects from the YCB data base [3, 4] on the table to create a
visual scene for iCub.

We put one of 19 different daily objects from the YCB data base
on a predefined location on the table, to which the iCub’s gaze
is directed. We used an event-based camera simulator eSim [51]
to generate events based on the simulated iCub’s camera videos.
Since in our object learning scenario, the robot gazes at the static
objects, we need to move the robot’s camera to generate the events
and “see” the objects. These eye movements are inspired by the
small fixational eye movements in humans called microsaccades
(MS) [30]. Some examples of the generated output are shown in
Fig. 4. Note that we don’t exploit any feature-extracting properties
of MS in this work, but would like to point out this opportunity for
future research.

Each object is placed at one of 20 different angles to simulate dif-
ferent viewing angles on the objects. For each object placement, the
robot gazes at the object and performs 5 microsaccades. We repeat

this process for all objects and rotations. In the end, we collected
event stream data recordings for 20 rotations of 19 objects, leading
to 380 recordings, where each recording contains 5 microsaccades.
The described simulator setup can be used to generate new sam-
ples to benchmark the model and to simulate interactive learning
on a real robot. We will release the current dataset upon paper
publication for benchmarking by other researchers.

3.2 Preprocessing of the Event Stream.
In our implementation, the event stream generated by microsac-
cades is first preprocessed on a CPU. Each recording is divided
into multiple microsaccadic “chunks” of 100 ms (one chunk = one
microsaccade) and only a region of interest (ROI) that is centered
on the object (Fig. 4) is extracted2. This preprocessing step is a
placeholder for a bottom-up attention mechanism for objects in the
scene, e.g. [68, 69]. In future work, the ROI will be selected by a
bottom-up saliency and visual search-driven top-down attention
module [12, 15, 19, 21, 25, 54].

3.3 Evaluation Framework
We evaluated the interactive continual learning capabilities of our
architecture in a simulated interaction with a user. In each experi-
ment, 8 objects are randomly chosen among 19 recorded ones. For
all chosen objects the first 8 rotations are selected, accounting to
overall 64 recordings. Each recording is separated into two groups:
out of 5, the first three microsaccades are used for learning, while
we tested the learned representations on the next two. To train the
network the “user” presents the training microsaccades of all 64
recordings (8 rotations, 8 objects) one by one in a random sequence.
After each input, the user observes the output of the network and
compares it to the actual label and if the prediction is incorrect, it
presents the same input again together with the label signal, other-
wise, it proceeds to the next input. In other words, we simulate an
on-demand online learning process.

Each of such learning sessions is followed by a testing session, to
demonstrate what the network has learned so far. The test microsac-
cades for all objects and rotations are presented to the network
sequentially and the inference outputs are observed by the user. In
these sessions no label signal is provided, rather the user measures
the accuracy for the test microsaccades of the already learned ob-
jects. The on-demand learning and testing sessions are interleaved
to measure the evolution of the learning process. We present the
results of these experiments in the following section together with
an analysis of the Gabor filter generated latent space and a com-
parison to the other online learning methods in terms of accuracy,
speed, and energy consumption.

2The ROI size was set 96 × 96 pixels and chosen manually here as a bounding box of
the object in the scene. The number of events in each chunk is variable and all events
in a chunk are injected into the network on chip in one (algorithmic) time step. The
network then processes this input in 100 (algorithmic) time steps. As we will see in
Sec. 4 the processing of one instance (i.e. 100-time steps) takes only 2.6ms, which is
much faster than the microsaccade itself (100 ms).
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(a) (b)

Figure 5: Cosine similarity between the C1 layer outputs
(the extracted features from different objects): among (a) 8
rotations of all objects, (b) two microsaccades of all objects
(the same rotation)

4 RESULTS
4.1 Discrimination capacity of the feature

extraction layers
Since we use a shallow and simplistic feature extraction, we present
an analysis of the latent space, created by the S1 and C1 layers for
different batches of 8 objects with 8 rotation each, sampled by 5
different microsaccades (Fig. 5), to evaluate the complexity of the
continual learning task, solved by the plastic layer of the SNN.

To explore the extracted feature representations, we computed
cosine similarity matrices for all combinations of the different ob-
jects, their views, and microsaccades. Accordingly, Fig. 5a displays
the similarity between different poses of all objects, demonstrating
that while some objects look similar under different views (darker
blue blocks around the diagonal), other objects are not similar in
different views and may overlap with views of the other objects (off-
diagonal dark blue patches). The similarity matrix for two different
microsaccades for the same view of objects in Fig. 5b furthermore
reveals that different microsaccades may sample the object’s ap-
pearance differently, making the classification task harder. This
exploration of the latent space indicates the limits for the best
possible accuracy of the subsequent classifier.

4.2 Continual learning of patterns
We perform our main experiment as described in Sec. 3.3. In all tests
presented here, the following setting is used: 8 objects and 8 poses
per object; for each of these 64 object instances 5 microsaccades
(MS) are recorded, summing up to 320 microsaccadic chunks. The
first three MSs are used during on-demand learning, while test
phases measure performance on the two unseen MSs. This process
is repeated for 3 epochs. The object-pose instances are randomly
shuffled during training. We limited the number of the classes for
our classifier to 8 objects to stay in the computational limits of a
single chip, however the objects are chosen randomly from the 19
recorded objects for each iteration of our experiment.

Fig. 6 shows a single run of the experiment where on-demand
learning sessions interleaved with testing phases. The three time
series plots show spikes of the Output, Label, and Error neurons.
Through the testing sessions, we assess the performance of the

Figure 6: Single iteration of a continual learning trial showing
spikes of output, label, and error neurons. For several testing
sessions, the confusionmatrices are shown on the right. After
the first iteration over the training set (all three training MS),
there are almost no errors and hence no label requests. The
objects in this trial: 0-large clamp, 1-tennis ball, 2-tuna fish
box, 3-banana, 4-scissors, 5-sponge, 6-screwdriver, 7-can.

network at different points in time, namely after each on-demand
learning session: all poses of all objects are presented one by one,
and responses are stored in a confusion matrix. Several snapshots
of the confusion matrix are shown on the right-hand side of the
figure. We can see that already after the first learning epoch, the
confusions are rare (<20%) and the accuracy of the SNN further
improves, reaching 96.55±2.02% after three learning epochs. This
result is obtained from 12 repetition of the experiment with different
sets of 8 objects chosen randomly from the 19 recorded objects.

Notably, in these tests, we use the value of the internal state
variable of LIF neurons to force a decision for an object, which
increases confusion. Alternatively, an output activation threshold
can be introduced and the “unknown object” neuron would be used
to signal low confidence in the decision, leading to practically zero
confusion errors after a learning episode.

Further analysis of the Fig. 6 reveals some important observa-
tions. First and foremost, the sparse spiking of Label and Error neu-
rons points at sparse weight update, as a result of the on-demand
learning process. If the object is inferred correctly, no label is pro-
vided and no weight update happens. Only if a wrong object is
selected and this mistake is detected by the “user”, the label is pro-
vided. Then this error is also detected by the NSM, which depresses
the responsible weights (see Sec. 2.2.2 and 2.2.3 for more details).
Therefore, the distance between the correct and wrong classes in
the feature space is increased. The network makes fewer and fewer
mistakes as the online training proceeds.

Another crucial result from these experiments is the resource
efficiency of the proposed architecture. Fig. 7b shows the number of
S2 neurons allocated in different object groups during the continual
learning process. One can observe that more neurons are allocated
for objects that look different under different viewpoints, while
objects with rotational symmetries require fewer prototype (S2)
neurons (e.g. bowl, Rubik’s cube, or soup can). This demonstrates
autonomous learning of the efficient representations, whose com-
plexity depends on the complexity of the object. Even though in the
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Table 2: Processing/execution time and energy consumption benchmarking results together with classification accuracy.
The experiments are conducted for a set of 8 objects with 8 poses, 3 training, and 2 testing microsaccades, comparing our
method (Loihi Continual Classifier) and online linear SVM (SGD), Perceptron, Passive-Aggressive classifier, and Naive Bayesian
multinomial approach. We report ET (execution time) and energy consumption per inference and learning instance for all
methods. Notably, we achieve up to x300 better energy per learning an instance (and up to x150 for inference), while showing
the best execution time for learning an instance and being on par with other methods in inference time

Execution time (ms)∗ Energy consumption (mJ)∗

Learning method Accuracy(%) Inference Learning Inference Learning

NBM [41] 98.2 ± 1.7 2.5 2.7 98 107
Passive-Aggressive [7] 94.5 ± 7.1 2.4 4.0 97 163
Perceptron 95.1 ± 6.1 2.4 4.1 98 164
SGD [72] 96.5 ± 2.5 2.4 4.0 99 163
Loihi Continual classifier 96.6 ± 2.0 2.6 2.6 0.6 0.6
*Numbers are reported per learning and inference instance

(a) (b)

Figure 7: (a) Classification accuracy for a set of 8 objectswith 8
poses, 3 training and 2 testing microsaccades: comparison be-
tween our method and online linear SVM (SGD), Perceptron,
Passive-Aggresive classifier, and Naive Bayesianmultinomial
approach. The accuracy is recorded during each test phase,
performed after each on-demand learning session (total of 9
test phases). These 9 phases are divided into 3 epochs, each
featuring learning over 3 learning MSs in sequence. (b) Num-
ber of the pose neurons recruited for different objects in the
learning process across 12 different learning runs.

current network the maximum number of pre-allocated neurons
per object is fixed, in the next iteration of the architecture we aim to
implement neuron allocation from a shared pool to further improve
the resource efficiency.

4.3 Comparison to non-neuromorphic
approaches

As a next step, we compared the continual classifier of our architec-
ture (S2 prototype layer + NSM) to other online learning methods
in the same test setting. Fig. 7a compares the test accuracy for dif-
ferent online learning algorithms for 8 objects and 8 poses. The
non-neuromorphic algorithms used for comparison are classifica-
tion methods and applied directly to the extracted feature vectors
of the C1 layer. These classifiers were trained with a mini-batch size
of 1, so only a single sample is shown each time (online training)
as in our original experiment. The mean accuracy is shown for 12

iterations for each method, the shaded regions are standard devia-
tions of the test accuracy. Our classifier shows a smaller variance
in accuracy and converges faster than online linear SVM (Stochas-
tic Gradient Descent with hinge loss [72]), the Perceptron, and a
Passive-Aggresive [7] classifiers. Even though the Naive Bayesian
classifier [41] achieves slightly higher accuracy, the subsequent
processing speed and energy consumption benchmarking reveals
the other advantageous sides of our approach.

In this regard, we isolated our continual classifier of the object
recognition network and benchmarked it against these conventional
online classifier methods running on CPU, in terms of processing
speed and energy consumption both for learning and inference
(Table 2). Results demonstrate up to x300 better energy per learning
instance (and up to x150 for inference) while showing the best
execution time for learning an instance and being on par with other
methods in inference time. Note, each training and testing instance
takes 100 timesteps in Loihi 1, hence reported execution times are
per 100 timesteps. The latency and energy numbers for inference
and learning are the same in our architecture. Clearly, the effect of
learning on latency and energy is negligible because the network
uses fast-acting learning rules that are precisely gated in time: less
than 0.4% of the weights in the network need to be updated per
100 timesteps. The requirement for 100 timesteps is an algorithmic
constraint, which will be relaxed in future work, featuring the next
implementation of continual classifier in Loihi 2 hardware3.

5 DISCUSSION AND CONCLUSION
In this work we present a new approach to neural network-based
object learning, specifically targeting applications in robotics where
learning new objects after deployment may be required. The learn-
ing process can unfold autonomously, in interaction with the user.
Objects’ views can be learned quickly by localizing learning to a
single layer of plastic synapses and ensuring that the complexity re-
quired to store different object views is accounted for by recruiting

3All experiments run on a machine with Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
x8, 32GB RAM running Ubuntu 20.04.2 LTS, python 3.8.10, and v. 1.0.0 of the Intel
NxSDK in Loihi 1 hardware. All performance measurements are based on testing as of
October 2021 and may not reflect all publicly available security updates. Results may
vary.
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new local-view neurons, i.e. prototypes. We present a simple, small-
scale example here that can be scaled and made robust to variations
in the visual appearance of objects, e.g. increasing scale and shift
invariance [1] and using richer feature representations. We reached
96.55±2.02% accuracy in our interactive, on-demand learning exper-
iments and demonstrated up to x300 energy efficiency and better or
on par latency compared to other online learning methods, despite
the current architectural and algorithmic limitations.

The absence of the weight normalization or the explicit long-
term voltage threshold adaptation is one limitation of the current
architecture: the unnormalized dot product is an unreliable sim-
ilarity measure. Additionally, the feature extraction layer is very
simple, having only one layer of Gabor filters. The dataset that is
generated and used for the learning and testing is also small in the
context of modern AI literature, however as the explored domain
is novel in many aspects, we believe this dataset is a good start and
the data generation pipeline allows future expansion. We will need
to test our algorithm in the real-world with actual robots and many
more objects to understand scaling of our algorithm.

Overall, this work contributes to learning approaches in robotics
that work in interactive settings autonomously, while allowing us to
build on the success achieved in deep learning on computer vision
benchmarks. Our approach relies on using a robot simulator and
can be extended to the physical platform with closed-loop behavior
to test the autonomy of the learning process and to demonstrate
continual learning. As the next step, we see a lot of potential in
comparing state-of-art continual learning approaches to our archi-
tecture in this kind of close loop interactive learning setting.
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