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This report introduces a new family of multimodal models, Gemini, that exhibit remarkable capabilities
across image, audio, video, and text understanding. The Gemini family consists of Ultra, Pro, and Nano
sizes, suitable for applications ranging from complex reasoning tasks to on-device memory-constrained
use-cases. Evaluation on a broad range of benchmarks shows that our most-capable Gemini Ultra model
advances the state of the art in 30 of 32 of these benchmarks — notably being the first model to achieve
human-expert performance on the well-studied exam benchmark MMLU, and improving the state of the
art in every one of the 20 multimodal benchmarks we examined. We believe that the new capabilities of
Gemini models in cross-modal reasoning and language understanding will enable a wide variety of use
cases and we discuss our approach toward deploying them responsibly to users.

1. Introduction

We present Gemini, a family of highly capable multimodal models developed at Google. We trained
Gemini jointly across image, audio, video, and text data for the purpose of building a model with both
strong generalist capabilities across modalities alongside cutting-edge understanding and reasoning
performance in each respective domain.

Gemini 1.0, our first version, comes in three sizes: Ultra for highly-complex tasks, Pro for enhanced
performance and deployability at scale, and Nano for on-device applications. Each size is specifically
tailored to address different computational limitations and application requirements. We evaluate
the performance of Gemini models on a comprehensive suite of internal and external benchmarks
covering a wide range of language, coding, reasoning, and multimodal tasks.

Gemini advances state-of-the-art in large-scale language modeling (Anil et al., 2023; Brown et al.,
2020; Chowdhery et al., 2023; Hoffmann et al., 2022; OpenAI, 2023a; Radford et al., 2019; Rae
et al., 2021), image understanding (Alayrac et al., 2022; Chen et al., 2022; Dosovitskiy et al., 2020;
OpenAI, 2023b; Reed et al., 2022; Yu et al., 2022a), audio processing (Radford et al., 2023; Zhang
et al., 2023), and video understanding(Alayrac et al., 2022; Chen et al., 2023). It also builds on the
work on sequence models (Sutskever et al., 2014), a long history of work in deep learning based
on neural networks (LeCun et al., 2015), and machine learning distributed systems (Barham et al.,
2022; Bradbury et al., 2018; Dean et al., 2012) that enable large-scale training.

Our most capable model, Gemini Ultra, achieves new state-of-the-art results in 30 of 32 benchmarks
we report on, including 10 of 12 popular text and reasoning benchmarks, 9 of 9 image understanding
benchmarks, 6 of 6 video understanding benchmarks, and 5 of 5 speech recognition and speech
translation benchmarks. Gemini Ultra is the first model to achieve human-expert performance on
MMLU (Hendrycks et al., 2021a) — a prominent benchmark testing knowledge and reasoning via a
suite of exams — with a score above 90%. Beyond text, Gemini Ultra makes notable advances on
challenging multimodal reasoning tasks. For example, on the recent MMMU benchmark (Yue et al.,
2023), that comprises questions about images on multi-discipline tasks requiring college-level subject
1See Contributions and Acknowledgments section for full author list. Please send correspondence to gemini-1-
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knowledge and deliberate reasoning, Gemini Ultra achieves a new state-of-the-art score of 62.4%,
outperforming the previous best model by more than 5 percentage points. It provides a uniform
performance lift for video question answering and audio understanding benchmarks.

Qualitative evaluation showcases impressive crossmodal reasoning capabilities, enabling the model
to understand and reason across an input sequence of audio, images, and text natively (see Figure 5
and Table 13). Consider the educational setting depicted in Figure 1 as an example. A teacher has
drawn a physics problem of a skier going down a slope, and a student has worked through a solution
to it. Using Gemini’s multimodal reasoning capabilities, the model is able to understand the messy
handwriting, correctly understand the problem formulation, convert both the problem and solution
to mathematical typesetting, identify the specific step of reasoning where the student went wrong in
solving the problem, and then give a worked through correct solution to the problem. This opens up
exciting educational possibilities, and we believe the new multimodal and reasoning capabilities of
Gemini models have dramatic applications across many fields.

Figure 1 | Verifying a student’s solution to a physics problem. The model is able to correctly recognize
all of the handwritten content and verify the reasoning. On top of understanding the text in the
image, it needs to understand the problem setup and correctly follow instructions to generate LATEX.

The reasoning capabilities of large language models show promise toward building generalist
agents that can tackle more complex multi-step problems. The AlphaCode team built AlphaCode
2 (Leblond et al, 2023), a new Gemini-powered agent, that combines Gemini’s reasoning capabilities
with search and tool-use to excel at solving competitive programming problems. AlphaCode 2
ranks within the top 15% of entrants on the Codeforces competitive programming platform, a large
improvement over its state-of-the-art predecessor in the top 50% (Li et al., 2022).

2



Gemini: A Family of Highly Capable Multimodal Models

In tandem, we advance the frontier of efficiency with Gemini Nano, a series of small models
targeting on-device deployment. These models excel in on-device tasks, such as summarization,
reading comprehension, text completion tasks, and exhibit impressive capabilities in reasoning, STEM,
coding, multimodal, and multilingual tasks relative to their sizes.

In the following sections, we first provide an overview of the model architecture, training infras-
tructure, and training dataset. We then present detailed evaluations of the Gemini model family,
covering well-studied benchmarks and human-preference evaluations across text, code, image, audio
and video — which include both English performance and multilingual capabilities. We also discuss
our approach to responsible deployment,2 including our process for impact assessments, developing
model policies, evaluations, and mitigations of harm before deployment decisions. Finally, we discuss
the broader implications of Gemini, its limitations alongside its potential applications — paving the
way for a new era of research and innovation in AI.

2. Model Architecture

Gemini models build on top of Transformer decoders (Vaswani et al., 2017) that are enhanced with
improvements in architecture and model optimization to enable stable training at scale and optimized
inference on Google’s Tensor Processing Units. They are trained to support 32k context length,
employing efficient attention mechanisms (for e.g. multi-query attention (Shazeer, 2019)). Our first
version, Gemini 1.0, comprises three main sizes to support a wide range of applications as discussed
in Table 1.

Model size Model description

Ultra Our most capable model that delivers state-of-the-art performance across a wide
range of highly complex tasks, including reasoning and multimodal tasks. It is
efficiently serveable at scale on TPU accelerators due to the Gemini architecture.

Pro A performance-optimized model in terms of cost as well as latency that delivers
significant performance across a wide range of tasks. This model exhibits strong
reasoning performance and broad multimodal capabilities.

Nano Our most efficient model, designed to run on-device. We trained two versions of
Nano, with 1.8B (Nano-1) and 3.25B (Nano-2) parameters, targeting low and high
memory devices respectively. It is trained by distilling from larger Gemini models. It
is 4-bit quantized for deployment and provides best-in-class performance.

Table 1 | An overview of the Gemini 1.0 model family.

Gemini models are trained to accommodate textual input interleaved with a wide variety of audio
and visual inputs, such as natural images, charts, screenshots, PDFs, and videos, and they can produce
text and image outputs (see Figure 2). The visual encoding of Gemini models is inspired by our own
foundational work on Flamingo (Alayrac et al., 2022), CoCa (Yu et al., 2022a), and PaLI (Chen et al.,
2022), with the important distinction that the models are multimodal from the beginning and can
natively output images using discrete image tokens (Ramesh et al., 2021; Yu et al., 2022b).

Video understanding is accomplished by encoding the video as a sequence of frames in the large
context window. Video frames or images can be interleaved naturally with text or audio as part of the
model input. The models can handle variable input resolution in order to spend more compute on
2We plan to update this report with more details ahead of the general availability of the Gemini Ultra model.
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Figure 2 | Gemini supports interleaved sequences of text, image, audio, and video as inputs (illustrated
by tokens of different colors in the input sequence). It can output responses with interleaved image
and text.

tasks that require fine-grained understanding. In addition, Gemini can directly ingest audio signals at
16kHz from Universal Speech Model (USM) (Zhang et al., 2023) features. This enables the model to
capture nuances that are typically lost when the audio is naively mapped to a text input (for example,
see audio understanding demo on the website).

Training the Gemini family of models required innovations in training algorithms, dataset, and
infrastructure. For the Pro model, the inherent scalability of our infrastructure and learning algorithms
enable us to complete pretraining in a matter of weeks, leveraging a fraction of the Ultra’s resources.
The Nano series of models leverage additional advancements in distillation and training algorithms
to produce the best-in-class small language models for a wide variety of tasks, such as summarization
and reading comprehension, which power our next generation on-device experiences.

3. Training Infrastructure

We trained Gemini models using TPUv5e and TPUv4 (Jouppi et al., 2023), depending on their sizes
and configuration. Training Gemini Ultra used a large fleet of TPUv4 accelerators across multiple
datacenters. This represents a significant increase in scale over our prior flagship model PaLM-2
which presented new infrastructure challenges. Scaling up the number of accelerators results in a
proportionate decrease in the mean time between failure of hardware in the overall system. We
minimized the rate of planned reschedules and preemptions, but genuine machine failures are
commonplace across all hardware accelerators at such large scales.

TPUv4 accelerators are deployed in “SuperPods” of 4096 chips, each connected to a dedicated
optical switch, which can dynamically reconfigure 4x4x4 chip cubes into arbitrary 3D torus topologies
in around 10 seconds (Jouppi et al., 2023). For Gemini Ultra, we decided to retain a small number of
cubes per superpod to allow for hot standbys and rolling maintenance.

TPU accelerators primarily communicate over the high speed inter-chip-interconnect, but at
Gemini Ultra scale, we combine SuperPods in multiple datacenters using Google’s intra-cluster and
inter-cluster network (Poutievski et al., 2022; Wetherall et al., 2023; yao Hong et al., 2018). Google’s
network latencies and bandwidths are sufficient to support the commonly used synchronous training
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paradigm, exploiting model parallelism within superpods and data-parallelism across superpods.

The ‘single controller’ programming model of Jax (Bradbury et al., 2018) and Pathways (Barham
et al., 2022) allows a single Python process to orchestrate the entire training run, dramatically
simplifying the development workflow. The GSPMD partitioner (Xu et al., 2021) in the XLA compiler
partitions the training step computation, and the MegaScale XLA compiler (XLA, 2019) pass statically
schedules appropriate collectives so that they maximally overlap with the computation with very little
variation in step time.

Maintaining a high goodput3 at this scale would have been impossible using the conventional
approach of periodic checkpointing of weights to persistent cluster storage. For Gemini, we instead
made use of redundant in-memory copies of the model state, and on any unplanned hardware failures,
we rapidly recover directly from an intact model replica. Compared to both PaLM and PaLM-2 (Anil
et al., 2023), this provided a substantial speedup in recovery time, despite the significantly larger
training resources being used. As a result, the overall goodput for the largest-scale training job
increased from 85% to 97%.

Training at unprecedented scale invariably surfaces new and interesting systems failure modes -
and in this instance one of the problems that we needed to address was that of “Silent Data Corruption
(SDC)” (Dixit et al., 2021; Hochschild et al., 2021; Vishwanathan et al., 2015). Although these are
extremely rare, the scale of Gemini means that we can expect SDC events to impact training every
week or two. Rapidly detecting and removing faulty hardware required several new techniques
that exploit deterministic replay to isolate incorrect computations, combined with proactive SDC
scanners on idle machines and hot standbys. Our fully deterministic infrastructure allowed us to
quickly identify root causes (including hardware failures) during the development leading up to the
Ultra model, and this was a crucial ingredient towards stable training.

4. Training Dataset

Gemini models are trained on a dataset that is both multimodal and multilingual. Our pretraining
dataset uses data from web documents, books, and code, and includes image, audio, and video data.

We use the SentencePiece tokenizer (Kudo and Richardson, 2018) and find that training the
tokenizer on a large sample of the entire training corpus improves the inferred vocabulary and
subsequently improves model performance. For example, we find Gemini models can efficiently
tokenize non-Latin scripts which can, in turn, benefit model quality as well as training and inference
speed.

The number of tokens used to train the largest models were determined following the approach
in Hoffmann et al. (2022). The smaller models are trained for significantly more tokens to improve
performance for a given inference budget, similar to the approach advocated in Touvron et al. (2023a).

We apply quality filters to all datasets, using both heuristic rules and model-based classifiers.
We also perform safety filtering to remove harmful content. We filter our evaluation sets from our
training corpus. The final data mixtures and weights were determined through ablations on smaller
models. We stage training to alter the mixture composition during training – increasing the weight of
domain-relevant data towards the end of training. We find that data quality is critical to a highly-
performing model, and believe that many interesting questions remain around finding the optimal
dataset distribution for pretraining.

3We define goodput as the time spent computing useful new steps over the elapsed time of the training job.
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5. Evaluation

The Gemini models are natively multimodal, as they are trained jointly across text, image, audio,
and video. One open question is whether this joint training can result in a model which has strong
capabilities in each domain – even when compared to models and approaches that are narrowly
tailored to single domains. We find this to be the case: Gemini sets a new state of the art across a
wide range of text, image, audio, and video benchmarks.

5.1. Text

5.1.1. Academic Benchmarks

We compare Gemini Pro and Ultra to a suite of external LLMs and our previous best model PaLM
2 across a series of text-based academic benchmarks covering reasoning, reading comprehension,
STEM, and coding. We report these results in Table 2. Broadly, we find that the performance of
Gemini Pro outperforms inference-optimized models such as GPT-3.5 and performs comparably with
several of the most capable models available, and Gemini Ultra outperforms all current models. In
this section, we examine some of these findings.

On MMLU (Hendrycks et al., 2021a), Gemini Ultra can outperform all existing models, achieving
an accuracy of 90.04%. MMLU is a holistic exam benchmark, which measures knowledge across a
set of 57 subjects. Human expert performance is gauged at 89.8% by the benchmark authors, and
Gemini Ultra is the first model to exceed this threshold, with the prior state-of-the-art result at 86.4%.
Achieving high performance requires specialist knowledge across many domains (e.g. law, biology,
history, etc.), alongside reading comprehension and reasoning. We find Gemini Ultra achieves highest
accuracy when used in combination with a chain-of-thought prompting approach (Wei et al., 2022)
that accounts for model uncertainty. The model produces a chain of thought with k samples, for
example 8 or 32. If there is a consensus above a preset threshold (selected based on the validation
split), it selects this answer, otherwise it reverts to a greedy sample based on maximum likelihood
choice without chain of thought. We refer the reader to appendix for a detailed breakdown of how
this approach compares with only chain-of-thought prompting or only greedy sampling.

In mathematics, a field commonly used to benchmark the analytical capabilities of models, Gemini
Ultra shows strong performance on both elementary exams and competition-grade problem sets. For
the grade-school math benchmark, GSM8K (Cobbe et al., 2021), we find Gemini Ultra reaches 94.4%
accuracy with chain-of-thought prompting and self-consistency (Wang et al., 2022) compared to
the previous best accuracy of 92% with the same prompting technique. Similar positive trends are
observed in increased difficulty math problems drawn frommiddle- and high-school math competitions
(MATH benchmark), with the Gemini Ultra model outperforming all competitor models, reaching
53.2% using 4-shot prompting. The model also outperforms the state of the art on even harder tasks
derived from American Mathematical Competitions (150 questions from 2022 and 2023). Smaller
models perform poorly on this challenging task scoring close to random, but Gemini Ultra can solve
32% of the questions, compared to the 30% solve rate for GPT-4.

Gemini Ultra also excels in coding, a popular use case of current LLMs. We evaluate the model
on many conventional and internal benchmarks and also measure its performance as part of more
complex reasoning systems such as AlphaCode 2 (see section 5.1.7 on complex reasoning systems).
For example, on HumanEval, a standard code-completion benchmark (Chen et al., 2021) mapping
function descriptions to Python implementations, instruction-tuned Gemini Ultra correctly implements
74.4% of problems. On a new held-out evaluation benchmark for python code generation tasks,
Natural2Code, where we ensure no web leakage, Gemini Ultra achieves the highest score of 74.9%.
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Gemini
Ultra

Gemini
Pro

GPT-4 GPT-3.5 PaLM 2-L Claude 2 Inflect-
ion-2

Grok 1 LLAMA-2

MMLU
Multiple-choice questions
in 57 subjects
(professional &
academic)
(Hendrycks et al., 2021a)

90.04%
CoT@32∗

83.7%
5-shot

79.13%
CoT@8∗

71.8%
5-shot

87.29%
CoT@32
(via API∗∗)

86.4%
5-shot
(reported)

70%
5-shot

78.4%
5-shot

78.5%
5-shot CoT

79.6%
5-shot

73.0%
5-shot

68.0%∗∗∗

GSM8K
Grade-school math
(Cobbe et al., 2021)

94.4%
Maj1@32

86.5%
Maj1@32

92.0%
SFT &
5-shot CoT

57.1%
5-shot

80.0%
5-shot

88.0%
0-shot

81.4%
8-shot

62.9%
8-shot

56.8%
5-shot

MATH
Math problems across
5 difficulty levels &
7 subdisciplines
(Hendrycks et al., 2021b)

53.2%
4-shot

32.6%
4-shot

52.9%
4-shot
(via API∗∗)

50.3%
(Zheng et al.,
2023)

34.1%
4-shot
(via API∗∗)

34.4%
4-shot

— 34.8% 23.9%
4-shot

13.5%
4-shot

BIG-Bench-Hard
Subset of hard BIG-bench
tasks written as CoT prob-
lems
(Srivastava et al., 2022)

83.6%
3-shot

75.0%
3-shot

83.1%
3-shot
(via API∗∗)

66.6%
3-shot
(via API∗∗)

77.7%
3-shot

— — — 51.2%
3-shot

HumanEval
Python coding tasks
(Chen et al., 2021)

74.4%
0-shot (IT)

67.7%
0-shot (IT)

67.0%
0-shot
(reported)

48.1%
0-shot

— 70.0%
0-shot

44.5%
0-shot

63.2%
0-shot

29.9%
0-shot

Natural2Code
Python code generation.
(New held-out set with no
leakage on web)

74.9%
0-shot

69.6%
0-shot

73.9%
0-shot
(via API∗∗)

62.3%
0-shot
(via API∗∗)

— — — — —

DROP
Reading comprehension
& arithmetic.
(metric: F1-score)
(Dua et al., 2019)

82.4
Variable
shots

74.1
Variable
shots

80.9
3-shot
(reported)

64.1
3-shot

82.0
Variable
shots

— — — —

HellaSwag
(validation set)
Common-sense multiple
choice questions
(Zellers et al., 2019)

87.8%
10-shot

84.7%
10-shot

95.3%
10-shot
(reported)

85.5%
10-shot

86.8%
10-shot

— 89.0%
10-shot

— 80.0%∗∗∗

WMT23
Machine translation (met-
ric: BLEURT)
(Tom et al., 2023)

74.4
1-shot (IT)

71.7
1-shot

73.8
1-shot
(via API∗∗)

— 72.7
1-shot

— — — —

Table 2 | Gemini performance on text benchmarks with external comparisons and PaLM 2-L.
∗ The model produces a chain of thought with k = 8 or 32 samples, if there is a consensus above a threshold (chosen based on the validation
split), it selects this answer, otherwise it reverts to a greedy sample. Further analysis in Appendix 9.1.
∗∗ Results self-collected via the API in Nov, 2023.
∗∗∗ Results shown use the decontaminated numbers from Touvron et al. (2023b) report as the most relevant comparison to Gemini models
which have been decontaminated as well.

Evaluation on these benchmarks is challenging and may be affected by data contamination. We
performed an extensive leaked data analysis after training to ensure the results we report here are as
scientifically sound as possible, but still found some minor issues and decided not to report results on
e.g. LAMBADA (Paperno et al., 2016). As part of the evaluation process, on a popular benchmark,
HellaSwag (Zellers et al., 2019), we find that an additional hundred finetuning steps on specific
website extracts corresponding to the HellaSwag training set (which were not included in Gemini
pretraining set) improve the validation accuracy of Gemini Pro to 89.6% and Gemini Ultra to 96.0%,
when measured with 1-shot prompting (we measured GPT-4 obtained 92.3% when evaluated 1-shot
via the API). This suggests that the benchmark results are susceptible to the pretraining dataset
composition. We choose to report HellaSwag decontaminated results only in a 10-shot evaluation
setting. We believe there is a need for more robust and nuanced standardized evaluation benchmarks
with no leaked data. So, we evaluate Gemini models on several new held-out evaluation datasets
that were recently released, such as WMT23 and Math-AMC 2022-2023 problems, or internally
generated from non-web sources, such as Natural2Code. We refer the reader to the appendix for a
comprehensive list of our evaluation benchmarks.
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Even so, model performance on these benchmarks gives us an indication of the model capabilities
and where they may provide impact on real-world tasks. For example, Gemini Ultra’s impressive
reasoning and STEM competencies pave the way for advancements in LLMs within the educational
domain4. The ability to tackle complex mathematical and scientific concepts opens up exciting
possibilities for personalized learning and intelligent tutoring systems.

5.1.2. Trends in Capabilities

We investigate the trends in capabilities across the Gemini model family by evaluating them on a
holistic harness of more than 50 benchmarks in six different capabilities, noting that some of the
most notable benchmarks were discussed in the last section. These capabilities are: “Factuality”
covering open/closed-book retrieval and question answering tasks; “Long-Context” covering long-
form summarization, retrieval and question answering tasks; “Math/Science” including tasks for
mathematical problem solving, theorem proving, and scientific exams; “Reasoning” tasks that require
arithmetic, scientific, and commonsense reasoning; “Multilingual” tasks for translation, summarization,
and reasoning in multiple languages. Please see appendix for a detailed list of tasks included for each
capability.
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Figure 3 | Language understanding and generation performance of Gemini model family across
different capabilities (normalized by the Gemini Pro model).

We observe consistent quality gains with increased model size in Figure 3, especially in reasoning,
math/science, summarization and long-context. Gemini Ultra is the best model across the board for
all six capabilities. Gemini Pro, the second-largest model in the Gemini family of models, is also quite
competitive while being a lot more efficient to serve.

5.1.3. Nano

Bringing AI closer to the user, we discuss the Gemini Nano 1 and Nano 2 models engineered for
on-device deployments. These models excel in summarization and reading comprehension tasks
with per-task finetuning. Figure 3 shows the performance of these pretrained models in comparison
to the much larger Gemini Pro model, while Table 3 dives deeper into specific factuality, coding,
Math/Science, and reasoning tasks. Nano-1 and Nano-2 model sizes are only 1.8B and 3.25B
parameters respectively. Despite their size, they show exceptionally strong performance on factuality,
i.e. retrieval-related tasks, and significant performance on reasoning, STEM, coding, multimodal and
4See demos on website https://deepmind.google/gemini.
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multilingual tasks. With new capabilities accessible to a broader set of platforms and devices, the
Gemini models expand accessibility to everyone.

Gemini Nano 1 Gemini Nano 2
accuracy normalized

by Pro
accuracy normalized

by Pro

BoolQ 71.6 0.81 79.3 0.90
TydiQA (GoldP) 68.9 0.85 74.2 0.91
NaturalQuestions (Retrieved) 38.6 0.69 46.5 0.83
NaturalQuestions (Closed-book) 18.8 0.43 24.8 0.56
BIG-Bench-Hard (3-shot) 34.8 0.47 42.4 0.58
MBPP 20.0 0.33 27.2 0.45
MATH (4-shot) 13.5 0.41 22.8 0.70
MMLU (5-shot) 45.9 0.64 55.8 0.78

Table 3 | Performance of Gemini Nano series on factuality, summarization, reasoning, coding and
STEM tasks compared to significantly larger Gemini Pro model.

5.1.4. Multilinguality

The multilingual capabilities of the Gemini models are evaluated using a diverse set of tasks requir-
ing multilingual understanding, cross-lingual generalization, and the generation of text in multiple
languages. These tasks include machine translation benchmarks (WMT 23 for high-medium-low
resource translation; Flores, NTREX for low and very low resource languages), summarization bench-
marks (XLSum, Wikilingua), and translated versions of common benchmarks (MGSM: professionally
translated into 11 languages).

Machine Translation Translation is a canonical benchmark in machine learning with a rich history.
We evaluated Gemini Ultra with instruction-tuning applied (see section 6.4.2) on the entire set of
language pairs in the WMT 23 translation benchmark in a few-shot setting. Overall, we found that
Gemini Ultra (and other Gemini models) performed remarkably well at translating from English to any
other language, and surpassed the LLM-based translation methods when translating out-of-English,
on high-resource, mid-resource and low-resource languages. In the WMT 23 out-of-English translation
tasks, Gemini Ultra achieved the highest LLM-based translation quality, with an average BLEURT
(Sellam et al., 2020) score of 74.8, compared to GPT-4’s score of 73.6, and PaLM 2’s score of 72.2.
When averaged across all language pairs and directions for WMT 23, we see a similar trend with
Gemini Ultra 74.4, GPT-4 73.8 and PaLM 2-L 72.7 average BLEURT scores on this benchmark.

WMT 23
(Avg BLEURT)

Gemini Ultra Gemini Pro Gemini Nano 2 Gemini Nano 1 GPT-4 PaLM 2-L

High Resource 74.2 71.7 67.7 64.1 74.0 72.6
Mid Resource 74.7 71.8 67.0 64.8 73.6 72.7
Out-of-English 74.8 71.5 66.2 65.2 73.6 72.2
Into-English 73.9 72.0 69.0 63.5 74.1 73.4
All languages 74.4 71.7 67.4 64.8 73.8 72.7

Table 4 | Performance of Gemini models on WMT 23 translation benchmark. All numbers with 1-shot.

In addition to the languages and translation tasks above, we also evaluate Gemini Ultra on very
low-resource languages. These languages were sampled from the tail of the following language sets:
Flores-200 (Tamazight and Kanure), NTREX (North Ndebele), and an internal benchmark (Quechua).
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For these languages, both from and into English, Gemini Ultra achieved an average chrF score of 27.0
in 1-shot setup, while the next-best model, PaLM 2-L, achieved a score of 25.3.

Multilingual Math and Summarization Beyond translation, we evaluated how well Gemini per-
forms in challenging tasks across a range of languages. We specifically investigated the math bench-
mark MGSM (Shi et al., 2023), which is a translated variant of the math benchmark GSM8K (Cobbe
et al., 2021). We find Gemini Ultra achieves an accuracy of 79.0%, an advance over PaLM 2-L which
scores 74.7%, when averaged across all languages in an 8-shot setup. We also benchmark Gemini on
the multilingual summarization benchmarks – XLSum (Hasan et al., 2021) and WikiLingua (Ladhak
et al., 2020). In XLSum, Gemini Ultra reached an average of 17.6 rougeL score compared to 15.4 for
PaLM 2. For Wikilingua, Gemini Ultra (5-shot) trails behind PaLM 2 (3-shot) measured in BLEURT
score. See Table 5 for the full results. Overall the diverse set of multilingual benchmarks show that
Gemini family models have a broad language coverage, enabling them to also reach locales and
regions with low-resource languages.

Gemini Ultra Gemini Pro GPT-4 PaLM 2-L

MGSM (8-shot) 79.0 63.5 74.5 74.7
XLsum (3-shot) 17.6 16.2 — 15.4
Wikilingua 48.9 47.8 — 50.4

Table 5 | Performance of Gemini models on multilingual math and summarization.

5.1.5. Long Context

Gemini models are trained with a sequence length of 32,768 tokens and we find that they make use
of their context length effectively. We first verify this by running a synthetic retrieval test: we place
key-value pairs at the beginning of the context, then add long filler text, and ask for value associated
with a particular key. We find that the Ultra model retrieves the correct value with 98% accuracy
when queried across the full context length. We further investigate this by plotting the negative log
likelihood (NLL) versus the token index across a held-out set of long documents in Figure 4. We
find that the NLL decreases with sequence position up to the full 32K context length. The longer
context length of Gemini models enable new use cases such as retrieval over documents and video
understanding discussed in section 5.2.2.

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K
Sequence position

NL
L

Pro
Ultra

Figure 4 | Negative log likelihood as a function of token index across 32K context length on a held-out
set of long documents.
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5.1.6. Human Preference Evaluations

Human preference of the model outputs provides an important indication of quality that complements
automated evaluations. We have evaluated the Gemini models in side-by-side blind evaluations where
human raters judge responses of two models to the same prompt. We instruction tune (Ouyang et al.,
2022) the pretrained model using techniques discussed in the section 6.4.2. The instruction-tuned
version of the model is evaluated on a range of specific capabilities, such as following instructions,
creative writing, multimodal understanding, long-context understanding, and safety. These capabili-
ties encompass a range of use cases inspired by current user needs and research-inspired potential
future use cases.

Instruction-tuned Gemini Pro models provide a large improvement on a range of capabilities,
including preference for the Gemini Pro model over the PaLM 2 model API, 65.0% time in creative
writing, 59.2% in following instructions, and 68.5% time for safer responses as shown in Table 6.
These improvements directly translate into a more helpful and safer user experience.

Creativity Instruction Follow-
ing

Safety

Win-rate 65.0% 59.2% 68.5%
95% Conf. Interval [62.9%, 67.1%] [57.6%, 60.8%] [66.0%, 70.8%]

Table 6 | Win rate of Gemini Pro over PaLM 2 (text-bison@001) with 95% confidence intervals.

5.1.7. Complex Reasoning Systems

Gemini can also be combined with additional techniques such as search and tool-use to create
powerful reasoning systems that can tackle more complex multi-step problems. One example of such
a system is AlphaCode 2, a new state-of-the-art agent that excels at solving competitive programming
problems (Leblond et al, 2023). AlphaCode 2 uses a specialized version of Gemini Pro – tuned on
competitive programming data similar to the data used in Li et al. (2022) – to conduct a massive
search over the space of possible programs. This is followed by a tailored filtering, clustering and
reranking mechanism. Gemini Pro is fine-tuned both to be a coding model to generate proposal
solution candidates, and to be a reward model that is leveraged to recognize and extract the most
promising code candidates.

AlphaCode 2 is evaluated on Codeforces,5 the same platform as AlphaCode, on 12 contests from
division 1 and 2, for a total of 77 problems. AlphaCode 2 solved 43% of these competition problems, a
1.7x improvement over the prior record-setting AlphaCode system which solved 25%. Mapping this to
competition rankings, AlphaCode 2 built on top of Gemini Pro sits at an estimated 85th percentile on
average – i.e. it performs better than 85% of entrants. This is a significant advance over AlphaCode,
which only outperformed 50% of competitors.

The composition of powerful pretrained models with search and reasoning mechanisms is an
exciting direction towards more general agents; another key ingredient is deep understanding across
a range of modalities which we discuss in the next section.

5http://codeforces.com/
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5.2. Multimodal

Gemini models are natively multimodal. These models exhibit the unique ability to seamlessly
combine their capabilities across modalities (e.g. extracting information and spatial layout out of
a table, a chart, or a figure) with the strong reasoning capabilities of a language model (e.g. its
state-of-art-performance in math and coding) as seen in examples in Figures 5 and 12. The models
also show strong performance in discerning fine-grained details in inputs, aggregating context across
space and time, and applying these capabilities over a temporally-related sequence of video frames
and/or audio inputs.

The sections below provide more detailed evaluation of the model across different modalities
(image, video, and audio), together with qualitative examples of the model’s capabilities for image
generation and the ability to combine information across different modalities.

5.2.1. Image Understanding

We evaluate the model on four different capabilities: high-level object recognition using captioning or
question-answering tasks such as VQAv2; fine-grained transcription using tasks such as TextVQA and
DocVQA requiring the model to recognize low-level details; chart understanding requiring spatial
understanding of input layout using ChartQA and InfographicVQA tasks; and multimodal reasoning
using tasks such as Ai2D, MathVista and MMMU. For zero-shot QA evaluation, the model is instructed
to provide short answers aligned with the specific benchmark. All numbers are obtained using greedy
sampling and without any use of external OCR tools.

Gemini
Ultra
(pixel only)

Gemini
Pro
(pixel only)

Gemini
Nano 2
(pixel only)

Gemini
Nano 1
(pixel only)

GPT-4V Prior SOTA

MMMU (val)
Multi-discipline college-level problems
(Yue et al., 2023)

59.4%
pass@1

62.4%
Maj1@32

47.9% 32.6% 26.3% 56.8% 56.8%
GPT-4V, 0-shot

TextVQA (val)
Text reading on natural images
(Singh et al., 2019)

82.3% 74.6% 65.9% 62.5% 78.0% 79.5%
Google PaLI-3, fine-tuned

DocVQA (test)
Document understanding
(Mathew et al., 2021)

90.9% 88.1% 74.3% 72.2% 88.4%
(pixel only)

88.4%
GPT-4V, 0-shot

ChartQA (test)
Chart understanding
(Masry et al., 2022)

80.8% 74.1% 51.9% 53.6% 78.5%
(4-shot CoT)

79.3%
Google DePlot, 1-shot PoT
(Liu et al., 2023)

InfographicVQA (test)
Infographic understanding
(Mathew et al., 2022)

80.3% 75.2% 54.5% 51.1% 75.1%
(pixel only)

75.1%
GPT-4V, 0-shot

MathVista (testmini)
Mathematical reasoning
(Lu et al., 2023)

53.0% 45.2% 30.6% 27.3% 49.9% 49.9%
GPT-4V, 0-shot

AI2D (test)
Science diagrams
(Kembhavi et al., 2016)

79.5% 73.9% 51.0% 37.9% 78.2% 81.4%
Google PaLI-X, fine-tuned

VQAv2 (test-dev)
Natural image understanding
(Goyal et al., 2017)

77.8% 71.2% 67.5% 62.7% 77.2% 86.1%
Google PaLI-X, fine-tuned

Table 7 | Image understanding Gemini Ultra consistently outperforms existing approaches even in
zero-shot, especially for OCR-related image understanding tasks for natural images, text, documents,
and figures without using any external OCR engine (‘pixel only’). Many existing approaches fine-tune
on the respective tasks, highlighted in gray, which makes the comparison with 0-shot not apples-to-
apples.
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We find that Gemini Ultra is state of the art across a wide range of image-understanding bench-
marks in Table 7. It achieves strong performance across a diverse set of tasks such as answering
questions on natural images and scanned documents as well as understanding infographics, charts and
science diagrams. When compared against publicly reported results from other models (most notably
GPT-4V), Gemini is better in zero-shot evaluation by a significant margin. It also exceeds several
existing models that are specifically fine-tuned on the benchmark’s training sets for the majority of
tasks. The capabilities of the Gemini models lead to significant improvements in the state of the art
on academic benchmarks like MathVista (+3.1%)6 or InfographicVQA (+5.2%).

MMMU (Yue et al., 2023) is a recently released evaluation benchmark, which consists of questions
about images across 6 disciplines with multiple subjects within each discipline that require college-
level knowledge to solve these questions. Gemini Ultra achieves the best score on this benchmark
advancing the state-of-the-art result by more than 5 percentage points and outperforms the previous
best result in 5 of 6 disciplines (see Table 8), thus showcasing its multimodal reasoning capabilities.

MMMU (val) Gemini Ultra (0-shot) GPT-4V (0-shot)
Maj@32 pass@1 pass@1

Art & Design 74.2 70.0 65.8
Business 62.7 56.7 59.3
Science 49.3 48.0 54.7
Health & Medicine 71.3 67.3 64.7
Humanities & Social Science 78.3 78.3 72.5
Technology & Engineering 53.0 47.1 36.7

Overall 62.4 59.4 56.8

Table 8 | Gemini Ultra performance on the MMMU benchmark (Yue et al., 2023) per discipline.
Each discipline covers multiple subjects, requiring college-level knowledge and complex reasoning.

Gemini models are also capable of operating across modalities and a diverse set of global languages
simultaneously, both for image understanding tasks (e.g., images containing text in Icelandic) and for
generation tasks (e.g., generating image descriptions for a wide range of languages). We evaluate the
performance of generating image descriptions on a selected subset of languages in the Crossmodal-
3600 (XM-3600) benchmark in a 4-shot setting, using the Flamingo evaluation protocol (Alayrac
et al., 2022), without any fine-tuning for all models. As shown in Table 9, Gemini models achieve a
significant improvement over the existing best model, Google PaLI-X.

XM-3600 (CIDER) Gemini Ultra
4-shot

Gemini Pro
4-shot

Google PaLI-X
4-shot

English 86.4 87.1 77.8
French 77.9 76.7 62.5
Hindi 31.1 29.8 22.2
Modern Hebrew 54.5 52.6 38.7
Romanian 39.0 37.7 30.2
Thai 86.7 77.0 56.0
Chinese 33.3 30.2 27.7

Average (of 7) 58.4 55.9 45.0

Table 9 | Multilingual image understanding Gemini models outperform existing models in captioning
images in many languages when benchmarked on a subset of languages in XM-3600 dataset (Thapliyal
et al., 2022).

6MathVista is a comprehensive mathematical reasoning benchmark consisting of 28 previously published multimodal
datasets and three newly created datasets. Our MathVista results were obtained by running the MathVista authors’
evaluation script.
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Figure 5 | Gemini’s multimodal reasoning capabilities to generate matplotlib code for rearranging
the subplots. The multimodal prompt is shown at the top-left in gray. Gemini Ultra’s response,
including its generated code, is shown in the right column in blue. The bottom left figure shows
rendered version of the generated code. Successfully solving this task shows the model’s capability
to combine several capabilities: (1) recognition of the functions depicted in the plots; (2) inverse
graphics to infer the code that would have generated the subplots; (3) instruction-following to put
subplots in their desired positions; and (4) abstract reasoning to infer that the exponential plot must
stay in its original place, because the sine plot must move out of the way for the 3-dimensional plot.

Qualitative evaluation in Figure 5 illustrates an example of Gemini Ultra’s multimodal reasoning
capabilities. The model is required to solve the task of generating matplotlib code that would rearrange
a set of subplots provided by the user. The model output shows that it successfully solves this task
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combining multiple capabilities of understanding the user plot, inferring the code required to generate
it, following user instructions to put subplots in their desired positions, and abstract reasoning about
the output plot. This highlights Gemini Ultra’s native multimodality and eludes to its more complex
reasoning abilities across interleaved sequences of image and text. We refer the reader to the appendix
for more qualitative examples.

5.2.2. Video Understanding

Understanding video input is an important step towards a useful generalist agent. We measure the
video understanding capability across several established benchmarks that are held-out from training.
These tasks measure whether the model is able to understand and reason over a temporally-related
sequence of frames. For each video task, we sample 16 equally-spaced frames from each video clip
and feed them to the Gemini models. For the YouTube video datasets (all datasets except NextQA
and the Perception test), we evaluate the Gemini models on videos that were still publicly available
in the month of November, 2023.

Gemini Ultra achieves state-of-the-art results on various few-shot video captioning tasks as well as
zero-shot video question answering tasks as shown in Table 10. This demonstrates its capability of
strong temporal reasoning across several frames. Figure 21 in the appendix provides a qualitative
example of understanding the video of the ball-striking mechanics of a soccer player and reasoning
about the player can improve their game.

Task Gemini Ultra Gemini Pro Few-shot SoTA

VATEX (test) 62.7 57.4 56.0
English video captioning
(Wang et al., 2019)

4-shots 4-shots DeepMind Flamingo, 4-shots

VATEX ZH (test) 51.3 50.0 –
Chinese video captioning
(Wang et al., 2019)

4-shots 4-shots

YouCook2 (val) 135.4 123.2 74.5
English cooking video captioning
(Zhou et al., 2018)

4-shots 4-shots DeepMind Flamingo, 4-shots

NextQA (test) 29.9 28.0 26.7
Video question answering
(Xiao et al., 2021)

0-shot 0-shot DeepMind Flamingo, 0-shot

ActivityNet-QA (test) 52.2 49.8 45.3
Video question answering
(Yu et al., 2019)

0-shot 0-shot Video-LLAVA, 0-shot

Perception Test MCQA (test) 54.7 51.1 46.3
Video question answering
(Pătrăucean et al., 2023)

0-shot 0-shot SeViLA (Yu et al., 2023), 0-shot

Table 10 | Few-shot video understanding across tasks and languages on selected academic
benchmarks. The reported metric is CIDER for video captioning, WUPS for NextQA, and top-1
accuracy for the Perception Test and ActivityNet-QA. For ActivityNet-QA, we use the Video-LLAVA
(Lin et al., 2023) evaluation protocol.

5.2.3. Image Generation

Gemini is able to output images natively, without having to rely on an intermediate natural language
description that can bottleneck the model’s ability to express images. This uniquely enables the model
to generate images with prompts using interleaved sequences of image and text in a few-shot setting.
For example, the user might prompt the model to design suggestions of images and text for a blog
post or a website (see Figure 10 in the appendix).
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Figure 6 shows an example of image generation in 1-shot setting. Gemini Ultra model is prompted
with one example of interleaved image and text where the user provides two colors (blue and yellow)
and image suggestions of creating a cute blue cat or a blue dog with yellow ear from yarn. The
model is then given two new colors (pink and green) and asked for two ideas about what to create
using these colors. The model successfully generates an interleaved sequence of images and text with
suggestions to create a cute green avocado with pink seed or a green bunny with pink ears from yarn.

Figure 6 | Image Generation. Gemini can output multiple images interleaved with text given a
prompt composed of image and text. In the left figure, Gemini Ultra is prompted in a 1-shot setting
with a user example of generating suggestions of creating cat and dog from yarn when given two
colors, blue and yellow. Then, the model is prompted to generate creative suggestions with two new
colors, pink and green, and it generates images of creative suggestions to make a cute green avocado
with pink seed or a green bunny with pink ears from yarn as shown in the right figure.
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5.2.4. Audio Understanding

We evaluate the Gemini Nano-1 and Gemini Pro models on a variety of public benchmarks and
compare it with Universal Speech Model (USM) (Zhang et al., 2023) and Whisper (large-v2 (Radford
et al., 2023) or large-v3 (OpenAI, 2023) as indicated). These benchmarks include automatic speech
recognition (ASR) tasks such as FLEURS (Conneau et al., 2023), VoxPopuli, (Wang et al., 2021),
Multi-lingual Librispeech (Pratap et al., 2020), as well as the speech translation task CoVoST 2,
translating different languages into English (Wang et al., 2020). We also report on an internal
benchmark YouTube test set. ASR tasks report a word error rate (WER) metric, where a lower number
is better. Translation tasks report a BiLingual Evaluation Understudy (BLEU) score, where a higher
number is better. FLEURS is reported on 62 languages that have language overlap with the training
data. Four segmented languages (Mandarin, Japanese, Korean and Thai) report character error rate
(CER), instead of WER, similar to Whisper (Radford et al., 2023).

Table 11 indicates that our Gemini Pro model significantly outperforms the USM and Whisper
models across all ASR and AST tasks, both for English and multilingual test sets. Note that there is a
large gain in FLEURS, compared to USM and Whisper, as our model is also trained with the FLEURS
training dataset. However, training the same model without FLEURS dataset results in a WER of 15.8,
which still outperforms Whisper. Gemini Nano-1 model also outperforms both USM and Whisper on
all datasets except FLEURS. Note that we did not evaluate Gemini Ultra on audio yet, though we
expect better performance from increased model scale.

Task Metric Gemini
Pro

Gemini
Nano-1

Whisper
(OpenAI, 2023;
Radford et al.,
2023)

USM
(Zhang et al.,
2023)

Automatic Speech
Recognition

YouTube
(en-us)

WER (↓) 4.9% 5.5% 6.5%
(v3)

6.2%

Multilingual
Librispeech
(en-us)
(Pratap et al., 2020)

WER (↓) 4.8% 5.9% 6.2%
(v2)

7.0 %

FLEURS
(62 lang)
(Conneau et al., 2023)

WER (↓) 7.6% 14.2% 17.6%
(v3)

11.8%

VoxPopuli
(14 lang)
(Wang et al., 2021)

WER (↓) 9.1% 9.5% 15.9%
(v2)

13.4%

Automatic Speech
Translation

CoVoST 2
(21 lang)
(Wang et al., 2020)

BLEU (↑) 40.1 35.4 29.1
(v2)

30.7

Table 11 | Speech evaluation results on selected benchmarks for ASR and AST. For ASR, the reported
metric is WER where lower is better. For AST, the reported metric is BLEU where higher is better.

Table 12 shows further error analysis with USM and Gemini Pro. We find that Gemini Pro produces
more understandable responses, particularly on rare words and proper nouns.

Domain Truth USM Gemini Pro Wav

Fleurs Scotturb bus 403 travels regularly to
Sintra, stopping at Cabo da Roca.

Scotboard bus four3 traversed regu-
larly to Centra stopping at Cabo de
Roga.

Scotturb bus 403 travels regularly to
Sintra, stopping at Cabo da Roca.

▲)))

Fleurs The archipelago lies 120 km north
of the Peninsula. The largest is King
George Island, with the settlement of
Villa Las Estrellas.

The archipelago lines 120 km north
of peninsula. The largest is Kingurch
island with the settlement of Cua
Losas.

The archipelago lies 120 km north
of the Peninsula. The largest is King
George Island, with the settlement of
Villa Las Estrellas.

▲)))

Table 12 | Qualitative examples for the ASR task in the benchmark. Incorrect transcriptions are
highlighted in red.
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5.2.5. Modality Combination

Multimodal demonstrations often include a combination of text interleaved with a single modality,
usually images. We demonstrate the ability to process a sequence of audio and images natively.

Consider a cooking scenario about making an omelet where we prompt the model with a sequence
of audio and images. Table 13 indicates a turn-by-turn interaction with the model, providing pictures
and verbally asking questions about the next steps for cooking an omelet. We note that the model
response text is reasonably accurate, and shows that model processes fine-grained image details to
evaluate when the omelet is fully cooked. See demo on the website.

Input Image Input Audio (transcribed) Model Response: Text

▲))) What’s the first step to make a veggie omelet
with these ingredients?

Crack the eggs into a bowl and whisk them.

▲))) Thank you for the instructions. I started mak-
ing my omelet, does it look ready now?

It looks like it’s almost ready. You can flip it over
to cook the other side.

(No image - it’s a follow up
on the previous question)

▲)))Why is it not ready? It’s not ready because the eggs are still runny.

▲)))What about now? It looks ready now. You can take it off the heat and
serve it.

Table 13 | Audio-visual qualitative example showcasing the ability of Gemini models to process
interleaved sequences of text, vision, and audio, as well as reason across modalities. This example
inputs interleaved images and audio from the user in a cooking scenario. The user prompts the model
for instructions to make an omelet and to inspect whether it is fully cooked.
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6. Responsible Deployment

During the development of the Gemini models, we follow a structured approach to responsible
deployment in order to identify, measure, and manage foreseeable downstream societal impacts
of our models, in line with previous releases of Google’s AI technology (Kavukcuoglu et al., 2022).
Throughout the lifecycle of the project, we follow the structure below. This section outlines our broad
approach and key findings through this process. We will share more details on this in an upcoming
report.

6.1. Impact Assessment

We develop model impact assessments to identify, assess, and document key downstream societal
benefits and harms associated with the development of advanced Gemini models. These are informed
by prior academic literature on language model risks (Weidinger et al., 2021), findings from similar
prior exercises conducted across the industry (Anil et al., 2023; Anthropic, 2023; OpenAI, 2023a),
ongoing engagement with experts internally and externally, and unstructured attempts to discover
new model vulnerabilities. Areas of focus include: factuality, child safety, harmful content, cybersecu-
rity, biorisk, representation and inclusivity. These assessments are updated in tandem with model
development.

Impact assessments are used to guide mitigation and product delivery efforts, and inform deploy-
ment decisions. Gemini impact assessments spanned across different capabilities of Gemini models,
assessing the potential consequences of these capabilities with Google’s AI Principles (Google, 2023).

6.2. Model Policy

Building upon this understanding of known and anticipated effects, we developed a set of “model
policies” to steer model development and evaluations. Model policy definitions act as a standardized
criteria and prioritization schema for responsible development and as an indication of launch-readiness.
Gemini model policies cover a number of domains including: child safety, hate speech, factual accuracy,
fairness and inclusion, and harassment.
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6.3. Evaluations

To assess the Gemini models against policy areas and other key risk areas identified within impact
assessments, we developed a suite of evaluations across the lifecycle of model development.

Development evaluations are conducted for the purpose of ‘hill-climbing’ throughout training and
fine-tuning Gemini models. These evaluations are designed by the Gemini team, or are assessments
against external academic benchmarks. Evaluations consider issues such as helpfulness (instruction
following and creativity), safety and factuality. See section 5.1.6 and the next section on mitigations
for a sample of results.

Assurance evaluations are conducted for the purpose of governance and review, usually at the end
of key milestones or training runs by a group outside of the model development team. Assurance
evaluations are standardized by modality and datasets are strictly held-out. Only high-level insights
are fed back into the training process to assist with mitigation efforts. Assurance evaluations include
testing across Gemini policies, and include ongoing testing for dangerous capabilities such as potential
biohazards, persuasion, and cybersecurity (Shevlane et al., 2023).

External evaluations are conducted by partners outside of Google to identify blindspots. External
groups stress-test our models across a range of issues, including across areas listed in the White House
Commitments,7 and tests are conducted through a mixture of structured evaluations and unstructured
red teaming. The design of these evaluations are independent and results are reported periodically to
the Google DeepMind team.

In addition to this suite of external evaluations, specialist internal teams conduct ongoing red
teaming of our models across areas such as the Gemini policies and security. These activities include
less structured processes involving sophisticated adversarial attacks to identify new vulnerabilities.
Discovery of potential weaknesses can then be used to mitigate risks and improve evaluation ap-
proaches internally. We are committed to ongoing model transparency and plan to share additional
results from across our evaluation suite over time.

6.4. Mitigations

Mitigations are developed in response to the outcomes of the assessment, policy, and evaluation
approaches described above. Evaluations and mitigations are used in an iterative way, with evaluations
being re-run following mitigation efforts. We discuss our efforts on mitigating model harms across
data, instruction-tuning, and factuality below.

6.4.1. Data

Prior to training, we take various steps to mitigate potential downstream harms at the data curation
and data collection stage. As discussed in the section on “Training Data”, we filter training data for
high-risk content and to ensure all training data is sufficiently high quality. Beyond filtering, we also
take steps to ensure all data collected meets Google DeepMind’s best practices on data enrichment,8
developed based on the Partnership on AI’s “Responsible Sourcing of Data Enrichment Services”9.
This includes ensuring all data enrichment workers are paid at least a local living wage.
7https://whitehouse.gov/wp-content/uploads/2023/07/Ensuring-Safe-Secure-and-Trustworthy-AI.pdf
8https://deepmind.google/discover/blog/best-practices-for-data-enrichment/
9https://partnershiponai.org/responsible-sourcing-considerations/
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6.4.2. Instruction Tuning

Instruction tuning encompasses supervised fine tuning (SFT) and reinforcement learning through
human feedback (RLHF) using a reward model. We apply instruction tuning in both text and
multimodal settings. Instruction tuning recipes are carefully designed to balance the increase in
helpfulness with decrease in model harms related to safety and hallucinations (Bai et al., 2022a).

Curation of “quality” data is critical for SFT, reward model training, and RLHF. The data mixture
ratios are ablated with smaller models to balance the metrics on helpfulness (such as instruction
following, creativity) and reduction of model harms, and these results generalize well to larger models.
We have also observed that data quality is more important than quantity (Touvron et al., 2023b; Zhou
et al., 2023), especially for larger models. Similarly, for reward model training, we find it critical
to balance the dataset with examples where the model prefers to say, “I cannot help with that,” for
safety reasons and examples where the model outputs helpful responses. We use multi-objective
optimization with a weighted sum of reward scores from helpfulness, factuality, and safety, to train a
multi-headed reward model.

We further elaborate our approach to mitigate risks of harmful text generation. We enumerate
approximately 20 harm types (e.g. hate speech, providing medical advice, suggesting dangerous
behavior) across a wide variety of use cases. We generate a dataset of potential harm-inducing queries
in these categories, either manually by policy experts and ML engineers, or via prompting high
capability language models with topical keywords as seeds.

Given the harm-inducing queries, we probe our Gemini models and analyze the model responses
via side-by-side evaluation. As discussed above, we balance the objective of model output response
being harmless versus being helpful. From the detected risk areas, we create additional supervised
fine-tuning data to demonstrate the desirable responses. To generate such responses at scale, we
heavily rely on a custom data generation recipe loosely inspired from Constitutional AI (Bai et al.,
2022b), where we inject variants of Google’s content policy language as “constitutions”, and utilize
language model’s strong zero-shot reasoning abilities (Kojima et al., 2022) to revise responses and
choose between multiple response candidates. We have found this recipe to be effective – for example
in Gemini Pro, this overall recipe was able to mitigate a majority of our identified text harm cases,
without any perceptible decrease on response helpfulness.

6.4.3. Factuality

It is important that our models generate responses that are factual in a variety of scenarios, and to
reduce the frequency of hallucinations. We focused instruction tuning efforts on three key desired
behaviors, reflecting real-world scenarios:

1. Attribution: If instructed to generate a response that should be fully attributed to a given
context in the prompt, Gemini should produce a response with the highest degree of faithfulness
to the context (Rashkin et al., 2023). This includes the summarization of a user-provided
source, generating fine-grained citations given a question and provided snippets akin to Menick
et al. (2022); Peng et al. (2023), answering questions from a long-form source such as a
book (Mihaylov et al., 2018), and transforming a given source to a desired output (e.g. an email
from a portion of a meeting transcript).

2. Closed-Book Response Generation: If provided with a fact-seeking prompt without any given
source, Gemini should not hallucinate incorrect information (see Section 2 of Roberts et al.
(2020) for a definition). These prompts can range from information-seeking prompts (e.g. “Who
is the prime minister of India?”) to semi-creative prompts that may request factual information
(e.g. “Write a 500-word speech in favor of the adoption of renewable energy”).
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3. Hedging: If prompted with an input such that it is “unanswerable”, Gemini should not hal-
lucinate. Rather, it should acknowledge that it cannot provide a response by hedging. These
include scenarios where the input prompt contains false-premise questions (see examples in Hu
et al. (2023)), the input prompt instructs the model to perform open-book QA, but the answer
is not derivable from the given context, and so forth.

We elicited these desired behaviors from Gemini models by curating targeted supervised-fine tuning
datasets and performing RLHF. Note that the results produced here do not include endowing Gemini
with tools or retrieval that purportedly could boost factuality (Menick et al., 2022; Peng et al., 2023).
We provide three key results on respective challenge sets below.

1. Factuality Set: An evaluation set containing fact-seeking prompts (primarily closed-book).
This is evaluated via human annotators who fact-check each response manually; we report the
percentage of factually-inaccurate responses as judged by annotators.

2. Attribution Set: An evaluation set containing a variety of prompts that require attribution to
sources in the prompt. This is evaluated via human annotators who check for attribution to
sources in the prompt for each response manually; the reported metric is AIS (Rashkin et al.,
2023).

3. Hedging Set: An automatic evaluation setup where we measure whether Gemini models hedge
accurately.

We compare Gemini Pro with a version of instruction-tuned Gemini Pro model without any factuality-
focused adaptation in Table 14. We observe that the rate of inaccuracy is halved in the factuality set,
the accuracy of attribution is increased by 50% from the attribution set, and the model successfully
hedges 70% (up from 0%) in the provided hedging set task.

Factuality Set
(Inaccurate Rate)

Attribution Set
(AIS)

Hedging Set
(Accuracy)

Gemini Pro
No factuality-focused adaptation

7.9%
[7%, 9%]

40.2%
[37.9%, 42.4%]

0%

Gemini Pro
Final stage of instruction tuning

3.4%
[2.8%, 4.1%]

59.7%
[57.2%, 61.9%]

69.30%

Table 14 | Factuality mitigations: Impact of instruction-tuning on the rate of inaccuracy, presence of
attribution and the rate of accurate hedging (with corresponding 95% confidence intervals).

6.5. Deployment

Following the completion of reviews, model cards (Mitchell et al., 2019) for each approved Gemini
model are created for structured and consistent internal documentation of critical performance and
responsibility metrics as well as to inform appropriate external communication of these metrics over
time.

6.6. Responsible Governance

Across the responsible development process, we undertake ethics and safety reviews with the Google
DeepMind’s Responsibility and Safety Council (RSC),10 an interdisciplinary group which evaluates
Google DeepMind’s projects, papers and collaborations against Google’s AI Principles. The RSC
10https://deepmind.google/about/responsibility-safety/
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provides input and feedback on impact assessments, policies, evaluations and mitigation efforts.
During the Gemini project, the RSC set specific evaluation targets across key policy domains (e.g.
child safety).

7. Discussion and Conclusion

We have presented Gemini, a new family of models that advance multimodal model capabilities
in text, code, image, audio, and video. This technical report evaluates the capabilities of Gemini
on a diverse set of widely-studied benchmarks, and our most capable model Gemini Ultra makes
significant advances across the board. In the natural language domain, the performance gains from
careful developments in data and model training at scale continue to deliver quality improvements,
setting new state of the art in several benchmarks. In particular, Gemini Ultra surpasses human-expert
performance on the exam benchmark MMLU, scoring 90.0%, which has been a defacto measure
of progress for LLMs ever since it was first released in 2020. In the multimodal domain, Gemini
Ultra sets new state of the art on most of the image understanding, video understanding, and audio
understanding benchmarks without task-specific modifications or tuning. In particular, Gemini Ultra’s
multimodal reasoning capabilities are evident from its state-of-the-art performance on the recent
MMMU benchmark (Yue et al., 2023), that comprises questions about images requiring college-level
subject knowledge and deliberate reasoning.

Beyond the state-of-art results on benchmarks, what we are most excited about is the new use cases
enabled by Gemini models. The new capabilities of Gemini models to parse complex images, such as
charts or infographics, reason over interleaved sequences of images, audio, and text, and generate
interleaved text and images as responses open a wide variety of new applications. As shown in figures
throughout the report and appendix, Gemini can enable new approaches in areas like education,
everyday problem solving, multilingual communication, information summarization, extraction, and
creativity. We expect that the users of these models will find all kinds of beneficial new uses that we
have only scratched the surface of in our own investigations.

Despite their impressive capabilities, we should note that there are limitations to the use of LLMs.
There is a continued need for ongoing research and development on “hallucinations” generated by
LLMs to ensure that model outputs are more reliable and verifiable. LLMs also struggle with tasks
requiring high-level reasoning abilities like causal understanding, logical deduction, and counterfactual
reasoning even though they achieve impressive performance on exam benchmarks. This underscores
the need for more challenging and robust evaluations to measure their true understanding as the
current state-of-the-art LLMs saturate many benchmarks.

Gemini is a further step towards our mission to solve intelligence, advance science and benefit
humanity, and we are enthusiastic to see how these models are used by our colleagues at Google and
beyond. We build on many innovations in machine learning, data, infrastructure, and responsible
development – areas that we have been pursuing at Google for over a decade. The models we present
in this report provide a strong foundation towards our broader future goal to develop a large-scale,
modularized system that will have broad generalization capabilities across many modalities.
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9. Appendix

9.1. Chain-of-Thought Comparisons on MMLU benchmark

We contrast several chain-of-thought approaches on MMLU and discuss their results in this section. We
proposed a new approach where model produces k chain-of-thought samples, selects the majority vote
if the model is confident above a threshold, and otherwise defers to the greedy sample choice. The
thresholds are optimized for each model based on their validation split performance. The proposed
approach is referred to as uncertainty-routed chain-of-thought. The intuition behind this approach
is that chain-of-thought samples might degrade performance compared to the maximum-likelihood
decision when the model is demonstrably inconsistent. We compare the gains from the proposed
approach on both Gemini Ultra and GPT-4 in Figure 7. We find that Gemini Ultra benefits more from
this approach compared to using only chain-of-thought samples. GPT-4’s performance improves from
84.2% with greedy sampling to 87.3% with uncertainty-routed chain-of-thought approach with 32
samples, but it already achieves these gains from using 32 chain-of-thought samples. In contrast,
Gemini Ultra improves its performance significantly from 84.0% with greedy sampling to 90.0% with
uncertainty-routed chain-of-thought approach with 32 samples while it marginally improves to 85.0%
with the use of 32 chain-of-thought samples only.
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Figure 7 | Chain-of-Thought with uncertainty routing on MMLU.
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9.2. Capabilities and Benchmarking Tasks

We use more than 50 benchmarks as a holistic harness to evaluate the Gemini models across text,
image, audio and video. We provide a detailed list of benchmarking tasks for six different capabilities in
text understanding and generation: factuality, long context, math/science, reasoning, summarization,
and multilinguality. We also enumerate the benchmarks used for image understanding, video
understanding, and audio understanding tasks.

• Factuality: We use 5 benchmarks: BoolQ (Clark et al., 2019), NaturalQuestions-Closed
(Kwiatkowski et al., 2019), NaturalQuestions-Retrieved (Kwiatkowski et al., 2019), RealtimeQA
(Kasai et al., 2022), TydiQA-noContext and TydiQA-goldP (Clark et al., 2020).

• Long Context: We use 6 benchmarks: NarrativeQA (Kočiský et al., 2018), Scrolls-Qasper,
Scrolls-Quality (Shaham et al., 2022), XLsum (En), XLSum (non-English languages) (Hasan
et al., 2021), and one other internal benchmark.

• Math/Science: We use 8 benchmarks: GSM8k (with CoT) (Cobbe et al., 2021), Hendryck’s
MATH pass@1 (Hendrycks et al., 2021b), MMLU (Hendrycks et al., 2021a), Math-StackExchange,
Math-AMC 2022-2023 problems, and three other internal benchmarks.

• Reasoning: We use 7 benchmarks: BigBench Hard (with CoT) (Srivastava et al., 2022; Suzgun
et al., 2022), CLRS (Veličković et al., 2022), ProofWriter (Tafjord et al., 2020), Reasoning-Fermi
problems (Kalyan et al., 2021), Lambada (Paperno et al., 2016), HellaSwag (Zellers et al.,
2019), DROP (Dua et al., 2019).

• Summarization: We use 5 benchmarks: XL Sum (English), XL Sum (non-English languages)
(Hasan et al., 2021), WikiLingua (non-English languages), WikiLingua (English) (Ladhak et al.,
2020), XSum (Narayan et al., 2018).

• Multilinguality: We use 10 benchmarks: XLSum (Non-English languages) (Hasan et al., 2021),
WMT22 (Kocmi et al., 2022), WMT23 (Tom et al., 2023), FRMT (Riley et al., 2023), WikiLingua
(Non-English languages) (Ladhak et al., 2020), TydiQA (no context), TydiQA (GoldP) (Clark
et al., 2020), MGSM (Shi et al., 2023), translated MMLU (Hendrycks et al., 2021a), NTREX
(Federmann et al., 2022), FLORES-200 (Team et al., 2022).

• Image and Video: We use 9 benchmarks for image understanding: MMMU (Yue et al., 2023),
TextVQA (Singh et al., 2019), DocVQA (Mathew et al., 2021), ChartQA (Masry et al., 2022),
InfographicVQA (Mathew et al., 2022), MathVista (Lu et al., 2023), AI2D (Kembhavi et al.,
2016), VQAv2 (Goyal et al., 2017), XM3600 (Thapliyal et al., 2022) for multi-lingual image
understanding, and 6 benchmarks for video understanding: VATEX (Wang et al., 2019) for
captioning in two different languages, YouCook2 (Zhou et al., 2018), NextQA (Xiao et al.,
2021), ActivityNet-QA (Yu et al., 2019), and Perception Test MCQA (Pătrăucean et al., 2023).

• Audio: We use 5 benchmarks including automatic speech recognition (ASR) tasks such as
FLEURS (Conneau et al., 2023), VoxPopuli (Wang et al., 2021), Multi-lingual Librispeech (Pratap
et al., 2020), and automatic speech translation task such as CoVoST 2 (Wang et al., 2020).
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9.3. Qualitative Examples

This section shows sample qualitative examples from prompting the Gemini Ultra model. Some
illustrative examples of multimodal reasoning for image understanding tasks over charts, natural
images and memes are shown in Figures 8, 9, 11, 13, 14, and 15. Figure 10 shows an example of image
generation capabilities of Gemini Ultra where the user generates an interleaved sequence of image
and text to design a blog post. Beyond English, Figure 16 shows model’s capability to understand
images in a multilingual setting. Gemini models also show strong performance on multimodal image
understanding and reasoning in mathematics, as shown in Figures 12, 18 and 19. Figure 20 is an
example of complex multimodal reasoning demonstrating how the model composes complex image
understanding, code generation, and instruction following capabilities for a given user task. In Figure
17, we see another example of the model being able to generate working code and follow complex
user instructions. Finally, Figure 21 shows an example of Gemini Ultra’s capability of understanding
video by reasoning over temporally connected set of frames.
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9.3.1. Chart understanding and reasoning over data
Prompt

Spot a data point that stands out in these charts and what that implicates. Then produce a
detailed markdown table for all the data shown.

Model Response (rendered Markdown)

The data point that stands out is the United States’ landfilled plastic waste, which is 73%. This
is significantly higher than the other countries and regions shown. This implies that the United
States is not doing as much to recycle or incinerate its plastic waste as other countries and
regions.

Country/Region Landfilled (%) Mismanaged (%) Incinerated (%) Recycled (%)

World 49 22 19 9

United States 73 4 19 4

Europe 44 6 38 12

Asia (excl. China and
India)

39 34 19 8

Figure 8 | Solving a problem requiring multimodal chart understanding.The model has to read the
text, understand the connections between different data points and reason over them to recommend
an interesting point and follow the instructions to generate a markdown table (shown correctly
rendered).
Source: Our World In Data (Ritchie et al., 2023).
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9.3.2. Multimodal question answering
Prompt

Do you know what it this plant? How do I best take care of it?

Model Response

This is a Persian shield plant. It is a tropical plant that is native to Southeast Asia. It is a
popular houseplant because it is easy to care for and has beautiful purple leaves.

Persian shield plants prefer bright, indirect light. They can tolerate some direct sunlight, but
too much direct sunlight can scorch their leaves. They also prefer warm temperatures and
high humidity.

Persian shield plants need to be watered regularly, but they should not be allowed to sit in
water. The soil should be kept moist but not soggy. They also benefit from beingmisted regularly.

Persian shield plants can be fertilized every two weeks during the growing season. A balanced
fertilizer is a good choice.

Persian shield plants are susceptible to pests, such as mealybugs and spider mites. These pests
can be controlled with insecticidal soap or neem oil.

Persian shield plants can be propagated by stem cuttings. The cuttings should be taken in the
spring or summer and should be rooted in water or a moist potting mix.

Figure 9 | Answering a multimodal information-seeking query. The model is able to recognize the
specific plant shown in the image and provide information about it. The model shows robustness to
typos as it is able to understand the user question despite them.
Source: photo taken by an author from the Gemini team.

51



Gemini: A Family of Highly Capable Multimodal Models

9.3.3. Interleaved image and text generation
Prompt

Please create a blog post about a trip to New York, where a dog and his owner had lots of fun.
Include a few pictures of the dog posing happily at different landmarks.

Model Response

Hi, I’m Cooper. I’m a 2 year old Goldendoodle who loves to travel. Last month, my family and
I went to New York City. It was my first time in the Big Apple, and I had a blast!

We stayed in a hotel near Times Square. It was so much fun to see all the bright lights and
people. We went to see a Broadway show, and I even got to meet some of the actors.

One of my favorite parts of New York City was Central Park. It was so big and beautiful. I
loved running around and playing fetch. We also went to the Statue of Liberty and the Empire
State Building. I was so excited to see all the famous landmarks.

I had so much fun in New York City. It’s definitely one of my favorite places to travel. I can’t
wait to go back someday!

Figure 10 | Generating interleaved text and images. The model is able to follow the instructions of
generating a blog post with images closely related to the text and with dog images showing high
levels of consistency across all images.
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9.3.4. Image understanding and reasoning

Prompt

Look at this sequence of three shapes. What shape should come as the fourth shape? Explain
your reasoning with detailed descriptions of the first shapes.

Model Response

The fourth shape should be a hexagon. The first shape is a triangle, the second shape is a
square, and the third shape is a pentagon. The number of sides in each shape is increasing
by one

Figure 11 | Solving a multimodal reasoning problem.The model is able to recognize shapes in the
image, understand their properties and reason about the relationship between them to predict the
next object.
Source: photo taken by an author from the Gemini team.
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9.3.5. Geometrical reasoning

Prompt

Find the height of the parallelogram given its area with 100 square units.

Model Response

The area of the parallelogram is equal to the product of the base and the height. Hence
100 = (𝑥 + 15)𝑥. We get 𝑥2 + 15𝑥 − 100 = 0. The roots of this equation are 𝑥1 = 5 and
𝑥2 = −20. The second root is negative and is not acceptable. Final Answer: The final answer
is 5. I hope it is correct.

Figure 12 | Solving a geometrical reasoning task. The model shows good understanding of the task
and is able to provide meaningful reasoning steps despite slightly unclear instructions.
Source: Lu et al. (2021).

9.3.6. Information seeking about objects

Prompt

Find a connection between these. Hint: think about historical events.

Model Response

The Moon is the only celestial body in which humans have played golf. In 1971, the Apollo
14 crew hit two golf balls on the lunar surface.

Figure 13 | Solving a puzzle using multimodal inputs. The model recognizes the objects in the images
and identifies a commonality that connects the two objects.
Source: photo taken by an author from the Gemini team.
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9.3.7. Multimodal reasoning based on visual cues

Prompt

Do you know the precise location where this image was taken?

Model Response

This image was taken in New York City. The Empire State Building is visible in the background.
The street in the foreground is 8th Avenue. The cross street is West 34th Street.

Figure 14 | Identifying the objects in the image (the Empire State Building) and recognizing what
those are even with small levels of visual distortion in the image. Based on the image, the model is
also able to correctly identify the precise location of the person taking the photo.
Source: photo taken by an author from the Gemini team.
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9.3.8. Multimodal humor understanding

Prompt

Can you explain this meme?

Model Response

The meme is about a person who is playing a game at 300 FPS, but their monitor is only
75Hz. The person is trying to catch the game, but it is too fast for their monitor to display.
The meme is funny because it is relatable to anyone who has ever played a game on a monitor
that is not fast enough.

Figure 15 | Explanation of humor in a meme. The model is showing the ability to not only describe
what is happening in the image but also what it means even though the cultural context is not
mentioned explicitly in the image or the prompt.
Source: Hwang and Shwartz (2023).
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9.4. Commonsense reasoning in a multilingual setting

Prompt

Explain what i should call my grandparents on each side of my family based on this chart

Model Response

On your father’s side, you would call your grandparents Yéye and Nǎinai. On your mother’s
side, you would call your grandparents Wàigōng and Wàipó.

Figure 16 | Common-sense reasoning in images. The model is able to understand the relationships
represented in the graphs and reason about them in a multilingual setting.
Source: image created by an author from the Gemini team.
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9.4.1. Reasoning and code generation
Prompt

Create a web app called "Opossum Search":

1. Every time you make a search query, it should redirect you to a google search with the same
query, but the word opossum before it.
2. It should be visually similar to Google search,
3. Instead of the google logo, it should have a picture of an opossum from the internet.
4. It should be a single html file, no separate js or css files.
5. It should say "Powered by google search" in the footer.

Model Response (rendered code)

Here is the code for Opossum Search:
1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title>Opossum Search</title>
5 <style>
6 body {
7 font−family: Arial, sans−serif;
8 margin: 0;
9 padding: 0;
10 }
11
12 header {
13 background−color: #333;
14 color: #fff;
15 text−align: center;
16 padding: 1rem 0;
17 }
18
19 .search−bar {
20 display: flex;
21 justify−content: center;
22 align−items: center;
23 height: 50px;
24 margin−top: 1rem;
25 }
26
27 .search−input {
28 width: 50%;
29 padding: 0.5rem;
30 border: 1px solid #ccc;
31 border−radius: 5px;
32 }
33
34 .search−button {
35 margin−left: 1rem;
36 padding: 0.5rem 1rem;
37 border: 1px solid #ccc;
38 border−radius: 5px;
39 cursor: pointer;
40 }
41
42 footer {
43 background−color: #333;
44 color: #fff;
45 text−align: center;
46 padding: 1rem 0;
47 margin−top: 1rem;
48 }
49 </style>
50 </head>
51 <body>
52 <header>
53 <h1>Opossum Search</h1>
54 <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/a/a4/Didelphis_virginiana.jpg/
55 1200px−Didelphis_virginiana.jpg" alt="Opossum" width="100">
56 </header>
57
58 <div class="search−bar">
59 <input type="text" class="search−input" placeholder="Search the web">
60 <button class="search−button">Search</button>
61 </div>
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62 <footer>
63 Powered by Google Search
64 </footer>
65
66 <script>
67 const searchInput = document.querySelector('.search−input');
68 const searchButton = document.querySelector('.search−button');
69
70 searchButton.addEventListener('click', () => {
71 const query = searchInput.value;
72 if (query) {
73 window.location.href = `https://www.google.com/search?q=opossum+${query}`;
74 }
75 });
76 </script>
77 </body>

This code creates a simple web app that looks similar to Google Search, but with an opossum
logo. When you enter a search query and click the "Search" button, it will redirect you to a
Google search with the word "opossum" added to the beginning of your query. The app is
powered by Google Search, as indicated in the footer.

Rendered Website

Figure 17 | Writing code for a website based on user request. The model follows the instructions and
requirements defined by the user and converts them to functioning code.

59



Gemini: A Family of Highly Capable Multimodal Models

9.4.2. Mathematics: Calculus
Prompt

Find the derivative of sinh 𝑥 + cosh 𝑦 = 𝑥 + 𝑦.

Model Response (rendered latex)

We have that 𝑑
𝑑𝑥
sinh 𝑥 = cosh 𝑥 and 𝑑

𝑑𝑥
cosh 𝑦 = sinh 𝑦

𝑑𝑦

𝑑𝑥
. Therefore,

cosh 𝑥 + sinh 𝑦
𝑑𝑦

𝑑𝑥
= 1 + 𝑑𝑦

𝑑𝑥
.

Solving for 𝑑𝑦

𝑑𝑥
, we find that

𝑑𝑦

𝑑𝑥
=
1 − cosh 𝑥
sinh 𝑦 − 1 .

Final Answer: The final answer is 1−cosh 𝑥sinh 𝑦−1 .

Figure 18 | Solving a calculus problem. The model is able to get a solution to a calculus problem with
step-by-step explanation and correctly defined LaTeX equations.
Source: question is provided by Macmillan Learning.
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9.5. Multi-step reasoning and mathematics
Prompt

In the year 2018 factory A produced goods worth 500 million forints, while factory B produced
goods worth 400 million forints. According to their long-term plans, factory A will increase
production by 5% each year, while factory B will increase production by 6% per year.

The above plans were published on an economy website. A debate started in the comment
section of the article: one user claimed that the difference between the volumes of production
between the two factories would get smaller and smaller in the next couple of years.

Calculate the missing values of the table below and show that the above claim is not true.

Header: | 2018 | 2019 | 2020 | 2021 |
Production volume of factory A (mln) | 500 | | | |
Production volume of factory B (mln) | 400 | | | |

Model Response (rendered Markdown)

Year Production volume of
factory A (mln)

Production volume of
factory B (mln)

Difference
(mln)

2018 500 400 100
2019 525 424 101
2020 551.25 449.44 101.81
2021 578.81 476.41 102.4

The production volume of factory A in 2019 is 500 * 1.05 = 525 million forints.
The production volume of factory B in 2019 is 400 * 1.06 = 424 million forints.
The difference in production volume in 2019 is 525 - 424 = 101 million forints.

The production volume of factory A in 2020 is 525 * 1.05 = 551.25 million forints.
The production volume of factory B in 2020 is 424 * 1.06 = 449.44 million forints.
The difference in production volume in 2020 is 551.25 - 449.44 = 101.81 million forints.

The production volume of factory A in 2021 is 551.25 * 1.05 = 578.81 million forints.
The production volume of factory B in 2021 is 449.44 * 1.06 = 476.41 million forints.
The difference in production volume in 2021 is 578.81 - 476.41 = 102.4 million forints.

As you can see, the difference in production volume between the two factories is actually
increasing, not decreasing. Therefore, the claim that the difference between the volumes of
production between the two factories would get smaller and smaller in the next couple of years
is not true.

Figure 19 | Solving a multi-step math problem. The model is able to understand the task and generate
a markdown table with correctly calculated values. It also explicitly follows the instructions to show
where the numbers come from and answer the question given in the task.
Source: Oktatási Hivatal (2023, p. 20)
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9.5.1. Complex image understanding, code generation, and instruction following
Prompt

I want you to take the function depicted in the top left subplot, multiply it by 1000, and then
add it to the function depicted in the bottom left subplot. Generate matplotlib code for the
single resulting plot.

Model Response (rendered code)

1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 x = np.linspace(0, 10, 1000)
5 y1 = np.sin(x)
6 y2 = np.exp(x)
7
8 plt.plot(x, 1000∗y1 + y2)
9 plt.show()

Rendered Graph

Figure 20 | Multimodal reasoning capabilities applied to code generation. Gemini Ultra needs to
perform inverse graphics task to infer the code that would have generated the plots, perform additional
mathematical transformations, and generate relevant code.
Source: figure generated by an author from the Gemini team.
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9.5.2. Video understanding and reasoning
Prompt (video)

How could this person improve their technique?

Model Response

This soccer player needs to work on their ball-striking mechanics. Their foot is not making
good contact with the ball, which is causing the ball to fly up and away from the goal. They
also need to work on their body positioning. They should be leaning into the shot with their
non-kicking leg in front of their kicking leg, and they should be following through with their
kicking leg.

Figure 21 | Video understanding and reasoning over the situation presented in the video. Here, we
provide a video as input to the model together with a text prompt (images are provided here only
for visualization purposes). The model is able to analyze what happened in the video and provide
recommendations on how the actions in the video could have been better.
Video source: "Football/Soccer Penalty Miss"
https://www.youtube.com/watch?v=VmWxjmJ3mvs

63

https://www.youtube.com/watch?v=VmWxjmJ3mvs

	Introduction
	Model Architecture
	Training Infrastructure
	Training Dataset
	Evaluation
	Text
	Academic Benchmarks
	Trends in Capabilities
	Nano
	Multilinguality
	Long Context
	Human Preference Evaluations
	Complex Reasoning Systems

	Multimodal
	Image Understanding
	Video Understanding
	Image Generation
	Audio Understanding
	Modality Combination


	Responsible Deployment
	Impact Assessment
	Model Policy
	Evaluations
	Mitigations
	Data
	Instruction Tuning
	Factuality

	Deployment
	Responsible Governance

	Discussion and Conclusion
	Contributions and Acknowledgments
	Appendix
	Chain-of-Thought Comparisons on MMLU benchmark
	Capabilities and Benchmarking Tasks
	Qualitative Examples
	Chart understanding and reasoning over data
	Multimodal question answering
	Interleaved image and text generation
	Image understanding and reasoning
	Geometrical reasoning
	Information seeking about objects
	Multimodal reasoning based on visual cues
	Multimodal humor understanding

	Commonsense reasoning in a multilingual setting
	Reasoning and code generation
	Mathematics: Calculus

	Multi-step reasoning and mathematics
	Complex image understanding, code generation, and instruction following
	Video understanding and reasoning



